Protein-protein interactions (PPIs) are crucial for biological functions and have applications ranging from drug design to synthetic cell circuits. Coiled-coils have been used as a model to study the sequence determinants of specificity. However, building well-behaved sets of orthogonal pairs of coiled-coils remains challenging due to inaccurate predictions of orthogonality and difficulties in testing at scale. To address this, we develop the next-generation bacterial two-hybrid (NGB2H) method, which allows for the rapid exploration of interactions of programmed protein libraries in a quantitative and scalable way using next-generation sequencing readout. We design, build, and test large sets of orthogonal synthetic coiled-coils, assayed over 8,000 PPIs, and used the dataset to train a more accurate coiled-coil scoring algorithm (iCipa). After characterizing nearly 18,000 new PPIs, we identify to the best of our knowledge the largest set of orthogonal coiled-coils to date, with fifteen on-target interactions. Our approach provides a powerful tool for the design of orthogonal PPIs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397247 | PMC |
http://dx.doi.org/10.1038/s41467-023-38697-x | DOI Listing |
J Vet Res
December 2024
Department of Bacterial Genetics, Institute of Microbiology, Warszawa, Poland.
Introduction: are the most common cause of food poisoning, which manifests itself in diarrhoea of varying severity. Additionally, because of the increasing number of people with immune deficiencies, more frequent serious complications of infections are being observed. The main source of infection is the consumption of contaminated poultry meat, which is a consequence of the insufficiency of current hygiene and biosecurity to control or eliminate it from the poultry food chain.
View Article and Find Full Text PDFPoult Sci
January 2025
Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, PR China. Electronic address:
Avian pathogenic Escherichia coli (APEC) is a major threat to the poultry industry, causing bloodstream and extraintestinal infections. Type II toxin-antitoxin (TA) systems are known to aid bacterial pathogens in adapting to stress, promoting persister cell formation, and enhancing virulence. While type II TA systems have been extensively studied in many pathogens, APEC-derived TAs have received limited attention.
View Article and Find Full Text PDFBiochimie
December 2024
Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20 Prague, Czech Republic. Electronic address:
Kingella kingae, an emerging pediatric pathogen, secretes the pore-forming toxin RtxA, which has been implicated in the development of various invasive infections. RtxA is synthesized as a protoxin (proRtxA), which gains its biological activity by fatty acylation of two lysine residues (K558 and K689) by the acyltransferase RtxC. The low acylation level of RtxA at K558 (2-23%) suggests that the complete acylation at K689 is crucial for toxin activity.
View Article and Find Full Text PDFMicrobiol Res
November 2024
Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China. Electronic address:
Robust biofilm formation on host niches facilitates beneficial Bacillus to promote plant growth and inhibit plant pathogens. Arginine kinase McsB is involved in bacterial development and stress reaction by phosphorylating proteins for degradation through a ClpC/ClpP protease. Conversely, cognate arginine phosphatase YwlE counteracts the process.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
School of Science + Mathematics, Emporia State University, Emporia, Kansas, USA.
PhoU proteins are negative regulators of the phosphate response, regulate virulence, and contribute to antibiotic resistance. has multiple genes encoding PhoU homologs that regulate persister formation and potentially virulence, but the molecular mechanisms of this regulation are not fully understood. We used a bacterial adenylate cyclase two-hybrid system to assess interactions between PhoU homologs and other proteins known to interact with PhoU from PhoU (also referred to as PhoU1) interacted with PhoU itself; PitR (also referred to as PhoU2) interacted with PitR itself.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!