Increasing levels of photovoltaic (PV) penetration to the electricity grid brings challenges to both design and operation of the grid due to its vulnerability to climate change. A crucial aspect of PV operation is power ramps leading to variability and instability in the grid. With notable large-scale PV deployment planned, including the world's largest planned solar energy infrastructure in Powell Creek Australia, characterising future ramps is crucial for ensuring stable power generation to support large-scale economic development. Using CORDEX-Australasia projections under RCP8.5 and RCP4.5 emission scenarios, future solar ramps across Australia have been characterised up to 2100. Results predict a reduction in ramp magnitude across Australia, with changes in frequency and period length varying with the location. This work highlights the importance of considering future changes in climate when designing large-scale solar farms to ensure the incorporation of frequency control devices and storage plans for a reliable power supply.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397292 | PMC |
http://dx.doi.org/10.1038/s41598-023-38566-z | DOI Listing |
Sci Total Environ
January 2025
Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea. Electronic address:
The increasing CO concentration in the atmosphere has substantial impacts on the global temperature. For energy sustainability and minimization of the effects of global warming, an approach to understand CO capturing and a carbon neutral culture is extremely essential in the present circumstances. The CO emission from vehicles and industries can be minimized using energy cost-effective techniques and can be converted more selectively into reusable fuels via thermochemical, electrochemical, photochemical, photocatalytic, electrocatalytic, biological and inorganic carbonate-based approaches.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Solar-powered electrochemical NH synthesis offers the benefits of sustainability and absence of CO emissions but suffers from a poor solar-to-ammonia yield rate (SAY) due to a low NH selectivity, large bias caused by the sluggish oxygen evolution reaction, and low photocurrent in the corresponding photovoltaics. Herein, a highly efficient photovoltaic-electrocatalytic system enabling high-rate solar-driven NH synthesis was developed. A high-performance Ru-doped Co nanotube catalyst was used to selectively promote the nitrite reduction reaction (NORR), exhibiting a faradaic efficiency of 99.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India. Electronic address:
This study investigates the potential impact of future climate scenarios designated by different shared socioeconomic pathways (SSPs) on vegetation health. Considering the entire Indian mainland as the study region, which exhibits a diverse range of climate and vegetation regimes, we analysed long-term past (1981-2020) and future (2021-2100) changes in vegetation greenness across seven vegetation types and four seasons. In order to gain insight into the intricate interrelationships between vegetation and hydroclimatic factors (soil moisture, precipitation, solar radiation, and temperature), a Standardized Vegetation Index (SVI) is used as a proxy for vegetation health, and a bivariate copula-based probabilistic model is developed incorporating a Combined Climate Index (CCI) derived through Supervised Principal Component Analysis (SPCA) and the SVI.
View Article and Find Full Text PDFEES Solar
January 2025
Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge CB3 0AS UK.
Thermal co-evaporation of halide perovskites is a solution-free, conformal, scalable, and controllable deposition technique with great potential for commercial applications, particularly in multi-junction solar cells. Monolithic triple-junction perovskite solar cells have garnered significant attention because they can achieve very high efficiencies. Nevertheless, challenges arise in fabricating these devices, as they require multiple layers and precise current matching across complex absorber stacks.
View Article and Find Full Text PDFGeorgian Med News
November 2024
4Department of Pathology, University of Virginia, Charlottesville, USA.
The toxicokinetics of nitrosamines remain a mystery to this day, though it appears that the role of nitrosamines in potentiating the generation of mutations required for the onset of skin cancer continues to be a significant concern. Nitrosamines are mutagens, genotoxic substances, and mediators of phototoxicity/carcinogenicity, whose long-term daily usage, in the context of polypharmacy, can result in the parallel appearance of heterogeneous forms of skin cancer: keratinocytic and melanocytic. But a number of clinical observations suggest that it is the nitrosamines that potentiate the multiple occurrences of skin cancer over the years, or recurrences of skin cancer localized in areas exposed to solar radiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!