Photothermia at the nanoscale induces ferroptosis via nanoparticle degradation.

Nat Commun

Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France.

Published: August 2023

The Fe(II)-induced ferroptotic cell death pathway is an asset in cancer therapy, yet it calls into question the biocompatibility of magnetic nanoparticles. In the latter, Fe(II) is sequestered within the crystal structure and is released only upon nanoparticle degradation, a transition that is not well understood. Here, we dissect the chemical environment necessary for nanoparticle degradation and subsequent Fe(II) release. Importantly, temperature acts as an accelerator of the process and can be triggered remotely by laser-mediated photothermal conversion, as evidenced by the loss of the nanoparticles' magnetic fingerprint. Remarkably, the local hot-spot temperature generated at the nanoscale can be measured in operando, in the vicinity of each nanoparticle, by comparing the photothermal-induced nanoparticle degradation patterns with those of global heating. Further, remote photothermal irradiation accelerates degradation inside cancer cells in a tumor spheroid model, with efficiency correlating with the endocytosis progression state of the nanoparticles. High-throughput imaging quantification of Fe release, ROS generation, lipid peroxidation and cell death at the spheroid level confirm the synergistic thermo-ferroptotic therapy due to the photothermal degradation at the nanoparticle level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397343PMC
http://dx.doi.org/10.1038/s41467-023-40258-1DOI Listing

Publication Analysis

Top Keywords

nanoparticle degradation
16
cell death
8
nanoparticle
6
degradation
6
photothermia nanoscale
4
nanoscale induces
4
induces ferroptosis
4
ferroptosis nanoparticle
4
degradation feii-induced
4
feii-induced ferroptotic
4

Similar Publications

Cyclometalated ruthenium (II) complex-based nanoparticles for enhanced microRNAs detection and imaging in living cells.

Biosens Bioelectron

December 2024

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China. Electronic address:

MicroRNA (miRNA) imaging in living cells is paramount for comprehending its dynamic functions and profiles, offering valuable insights into miRNA-related cellular processes. However, this remains challenging due to limited transfection agents and the low abundance of miRNAs. Herein, a smart nanosystem was proposed for miRNA imaging in living cells by ingeniously integrating cyclometalated ruthenium (II) nanoparticles (RuNPs) with a catalyzed hairpin assembly (CHA) strategy.

View Article and Find Full Text PDF

Cefixime (CFX) is a potent antibiotic against gram-positive and gram-negative bacteria that resists degradation and typical removal procedures. This research aimed to synthesize a modified AgCuFeO@GO nanoparticle electrode with anchored MnO for removing CFX by three-dimensional electrochemical oxidation. The physical and chemical characteristics of the nanocomposite were evaluated using various techniques, including FESEM, XRD, EDS-mapping, FTIR, BET, VSM, and TGA.

View Article and Find Full Text PDF

Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.

View Article and Find Full Text PDF

FcRn-guided antigen trafficking enhances cancer vaccine efficacy.

Cancer Immunol Immunother

January 2025

Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.

The development of tumor vaccines represents a significant focus within cancer therapeutics research. Nonetheless, the efficiency of antigen presentation in tumor vaccine remains suboptimal. We introduce an innovative mRNA-lipid nanoparticle platform designed to express tumor antigenic epitopes fused with the transmembrane domain and cytoplasmic tail of the neonatal Fc receptor (FcRn).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Tauopathies are a group of neurodegenerative disorders which are characterized by the accumulation of abnormal tau protein in the brain. However, the mechanistic understanding of pathogenic tau formation and spread within the brain remains elusive. Astrocytes are major immune reactive cells in the brain and have been implicated in exacerbating tau pathology by releasing extracellular vesicles (AEVs) containing pro-inflammatory cytokines and chemokines upon activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!