Over the last years, hard carbon (HC) has been the most promising anode material for sodium-ion batteries due to its low voltage plateau, low cost and sustainability. In this study, biomass waste (spent coffee grounds, sunflower seed shells and rose stems) was investigated as potential material for hard carbon preparation combining a two-step method consisting of on hydrothermal carbonization (HTC), to remove the inorganic impurities and increase the carbon content, and a subsequent pyrolysis process. The use of HTC as pretreatment prior to pyrolysis improves the specific capacity in all the materials compared to the ones directly pyrolyzed by more than 100 % at high C-rates. The obtained capacity ranging between 210 and 280 mAh g at C/15 is similar to the values reported in literature for biomass-based hard carbons. Overall, HC obtained from sunflower seed shell performs better than that obtained from the other precursors with an initial Coulombic efficiency (ICE) of 76 % and capacities of 120 mAh g during 1000 cycles at C with a high capacity retention of 86-93 %.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202301053DOI Listing

Publication Analysis

Top Keywords

hydrothermal carbonization
8
hard carbons
8
hard carbon
8
sunflower seed
8
carbonization improve
4
improve performance
4
performance biowaste-derived
4
hard
4
biowaste-derived hard
4
carbons sodium
4

Similar Publications

Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.

View Article and Find Full Text PDF

A cost-effective industrial TiOSO solution was employed to fabricate visible light active sulfur-doped titanium dioxide (S-TiO) via a facile hydrothermal method. The effect of calcination temperature on morphology, particle size, crystallinity, and photocatalytic property of S-TiO was systematically investigated. Successful incorporation of sulfur into TiO was confirmed by carbon-sulfur analysis, X-ray photoelectron spectroscopy (XPS), and Energy dispersive spectrometer (EDS).

View Article and Find Full Text PDF

Chitosan salicylaldehyde/calcium oxide nanoparticle (CS-SL/CaO) was synthesized by hydrothermal process and isolated via different drying processes, namely, air-drying (AD) and freeze-drying (FD). The physicochemical properties of freeze-dried CS-SL/CaO nanoparticle (CS-SL/CaO-FD) and air-dried CS-SL/CaO nanoparticle (CS-SL/CaO-AD) were compared. In particular, the adsorption properties reveal that the specific surface area of CS-SL/CaO-FD increased by ca.

View Article and Find Full Text PDF

Novel functional materials possessing the capability to attenuate electromagnetic energy are being increasingly incorporated into home decor as concerns over excessive electromagnetic radiation pollution continue to grow. The properties of magnetism and dielectricity in the flexible peanut shell/CoFeO/reduced graphene oxide/polyvinyl alcohol (PS/CF/(RGO)/PVA) nanocomposites can be finely tuned by adjusting the amount of RGO in the mixture. An examination of the composite's absorption capabilities revealed a direct link between higher RGO content and enhanced absorption.

View Article and Find Full Text PDF

Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.

J Colloid Interface Sci

December 2024

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!