To maintain membrane homeostasis, ruminal bacteria synthesize branched-chain fatty acids (BCFA) or their derivatives (vinyl ethers) that are recovered during methylation procedures as branched-chain aldehydes (BCALD). Many strains of cellulolytic bacteria require 1 or more branched-chain volatile fatty acid (BCVFA). Therefore, the objective of this study was to investigate BCVFA incorporation into bacterial lipids under different dietary conditions. The study was an incomplete block design with 8 continuous culture fermenters used in 4 periods with treatments (n = 4) arranged as a 2 × 2 × 2 factorial. The factors were high (HF) or low forage (LF, 67 or 33% forage, 33:67 alfalfa:orchardgrass), without or with supplemental corn oil (CO; 3% dry matter, 1.5% linoleic fatty acid), and without or with 2.15 mmol/d (5 mg/d C each of isovalerate, isobutyrate, and 2-methylbutyrate). After methylation of bacterial pellets collected from each fermenter's effluent, fatty acids and fatty aldehydes were separated before analysis by gas chromatography and isotope ratio mass spectrometry. Supplementation of BCVFA did not influence biohydrogenation extent. Label was only recovered in branched-chain lipids. Lower forage inclusion decreased BCFA in bacterial fatty acid profile from 9.45% with HF to 7.06% with LF and decreased BCALD in bacterial aldehyde profile from 55.4% with HF to 51.4% with LF. Supplemental CO tended to decrease iso even-chain BCFA and decreased iso even-chain BCALD in their bacterial lipid profiles. The main 18:1 isomer was cis-9 18:1, which increased (P < 0.01) by 25% from CO (data not shown). Dose recovery in bacterial lipids was 43.3% lower with LF than HF. Supplemental CO decreased recovery in the HF diet but increased recovery with LF (diet × CO interaction). Recovery from anteiso odd-chain BCFA and BCALD was the greatest; therefore, 2-methylbutyrate was the BCVFA primer most used for branched-chain lipid synthesis. Recovery in iso odd-chain fatty acids (isovalerate as primer) was greater than label recovery in iso even-chain fatty acids (isobutyrate as primer). Fatty aldehydes were less than 6% of total bacterial lipids, but 26.0% of C recovered in lipids were recovered in BCALD because greater than 50% of aldehydes were branched-chain. Because BCFA and BCALD are important in the function and growth of bacteria, especially cellulolytics, BCVFA supplementation can support the rumen microbial consortium, increasing fiber degradation and efficiency of microbial protein synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2022-23192DOI Listing

Publication Analysis

Top Keywords

fatty acids
20
bacterial lipids
16
fatty acid
12
iso even-chain
12
fatty
10
branched-chain volatile
8
volatile fatty
8
corn oil
8
bacterial
8
incorporation bacterial
8

Similar Publications

Ambient Ionization Mass Spectrometry for Fatty Acids Composition Investigation of Natural Lipids: A Multidisciplinary Workshop.

Rapid Commun Mass Spectrom

January 2025

Project Center of Advanced Mass Spectrometry Technologies, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.

Rationale: Teaching mass spectrometry essentials is usually connected with one of the basic courses for undergrads. Thus, specific previous knowledge is required from students. However, the necessity of teaching mass spectrometry essentials to students of different academic specializations and multidisciplinary groups can arise in every academic group.

View Article and Find Full Text PDF

Circulating monocytes contribute to the defense against pathogens and play a crucial role in maintaining immune homeostasis. While there is substantial evidence regarding the triggers of monocyte activation, our understanding of how monocyte function is restored toward homeostasis after activation remains limited. Here, we assessed the changes in monocyte anisocytosis upon activation in blood, measured by monocyte distribution width (MDW), a biomarker for sepsis.

View Article and Find Full Text PDF

Metabolism-lipid droplet-nucleic acid crosstalk to regulate lipid storage and other cellular processes in oleaginous Rhodococcus bacteria.

Biol Cell

January 2025

INBIOP (Instituto de Biociencias de la Patagonia), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina.

Actinobacteria belonging to Mycobacterium and Rhodococcus genera are able to synthesize and intracellularly accumulate variable amounts of triacylglycerols (TAG) in the form of lipid droplets (LDs). The lipid storage capacity of LDs in cells is controlled by the balance between lipogenesis and lipolysis. The growth of LDs in bacterial cells may be directly promoted by TAG biosynthesis, whereas TAG degradation might result in the reduction of LD sizes and lipid storage capacity.

View Article and Find Full Text PDF

Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Herein, we explore the roles of long-chain fatty acid coenzyme A ligase (ACSL) family members in MM.

View Article and Find Full Text PDF

Purpose: Encephalitozoon intestinalis is an obligate intracellular microsporidian fungus that causes severe gastrointestinal infections, particularly in immunocompromised individuals. Propolis (PROP), a resinous substance derived from bees, has antimicrobial, anti-inflammatory and antioxidant properties, while royal jelly (RJ) has immunomodulatory, antioxidant and antimicrobial activities. The aim of this study was to investigate the therapeutic potential of PROP and RJ against E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!