Carbon-coated iron selenide derived from double-framework as an advance anode for Na-ion battery.

J Colloid Interface Sci

Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; Duozhu Technology (Wuhan) Co., LTD, China.

Published: December 2023

Owing to the desirable nano-morphology, controllable structure, and ease of preparation, metal-organic frameworks (MOFs) are widely used as the precursors for electrodes in Na-ion battery (NIB). However, MOF structures are prone to fracture and collapse during the reactions. Additionally, MOF-derived electrodes often exhibit a high expansion rate, which negatively impacts the long cyclic capability of NIBs. Herein, we employed a stable covalent-organic framework (COF) as a protective coating for the first time to preserve the MOF structure. A shuttle-like iron selenide (FeSe) coated with N-doped carbon (NC) was synthesized using a simple hydrothermal method, surface coating, and subsequent selenizing process. Due to its large specific surface area and well-developed porosity, the double-framework derived FeSe/NC electrode provides abundant active sites for Na storage. The COF and COF-derived NC protect the structure of FeSe/NC during synthesis and cyclic process, respectively. The high conductivity of the NC coating enhances the electron/ion conductivity of FeSe/NC, thereby beneficial the rate performance. As the material anode for NIB, the FeSe/NC electrode exhibits a high initial charging/discharging capacity (425.7/478.4 mAh·g with an initial Coulombic efficiency of 89.0 %), excellent rate performance (333.5 mAh·g at 12 A·g), long-durable cycle capability (290.8 mAh·g after 1000 cycles at 8 A·g) and fast charging ability (143 s). This work provides a novel strategy of "COF on MOF" to prepare high-performance electrode materials for NIB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.07.126DOI Listing

Publication Analysis

Top Keywords

iron selenide
8
na-ion battery
8
fese/nc electrode
8
rate performance
8
carbon-coated iron
4
selenide derived
4
derived double-framework
4
double-framework advance
4
advance anode
4
anode na-ion
4

Similar Publications

Synthesis of [Fe[(μ-SeCH)NH](CN)(CO)] and Related Iron Selenoates.

Organometallics

January 2025

School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

The dianion [Fe[(μ-SeCH)NH](CN)(CO)] ([]) is of interest for the preparation of the selenide analog of the active site of the [FeFe]-hydrogenases. The obvious route for its synthesis by cyanation of Fe[(μ-SeCH)NH](CO) () fails for reasons that this paper explains and resolves. We show that CN cleaves Se-C bonds in .

View Article and Find Full Text PDF

Solar-Driven Sulfide Oxidation Paired With CO Reduction Based on Vacancies Engineering of Copper Selenide.

Small

December 2024

Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin, 300350, P. R. China.

Photovoltaic-driven electrochemical (PV-EC) carbon dioxide reduction (COR) coupled with sulfide oxidation (SOR) can efficiently convert the solar energy into chemical energy, expanding its applications. However, developing low-cost electrocatalysts that exhibit high selectivity and efficiency for both COR and SOR remains a challenge. Herein, a bifunctional copper selenide catalyst is developed with copper vacancies (v-CuSe) for the COR-SOR.

View Article and Find Full Text PDF

[Na(HO)][FeSe] was synthesized using hydrothermal methods and characterized by single-crystal X-ray diffraction, Fe Mössbauer spectroscopy, magnetization, and muon spin resonance (μSR) measurements. The cubic crystal structure (space group 23, = 11.785 Å, = 2) contains heterocubane-type clusters with symmetry.

View Article and Find Full Text PDF

Controlled synthesis of hierarchical flowerlike cobalt tin sulfide (SnCoS) is successfully obtained using the chelation of the biomolecule l-asparagine with cobalt-tin metal cations by a hydrothermal technique. l-asparagine plays a crucial role as an inducer and a good structure-directing activity. Subsequently, pine needle-shaped cobalt iron selenium (FeCoSe) is tightly deposited on the SnCoS surface to construct cobalt tin sulfide coated with cobalt iron selenide (FeCoSe@SnCoS) heterostructure, which has exposed more active sites and the most abundant channels for electron/ion transfer.

View Article and Find Full Text PDF

Zinc selenide is an excellent matrix material to dope with rare-earth and transition metal to achieve mid-infrared luminescence to develop high power lasers. The luminescence, morphology and refractive index is significantly affected by the doping and defects generated due to size and valency of dopants, concentration, growth process and convection during the growth. The aim of the study is to investigate effect of point and line defects generated due to low doping of iron and chromium on the emission and morphology of the zinc selenide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!