A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Defining the toxicological profile of 4-hydroxyphenylpyruvate dioxygenase-directed herbicides to Aedes aegypti and Amblyomma americanum. | LitMetric

Defining the toxicological profile of 4-hydroxyphenylpyruvate dioxygenase-directed herbicides to Aedes aegypti and Amblyomma americanum.

Pestic Biochem Physiol

Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA. Electronic address:

Published: August 2023

Inhibitors targeting the 4-hydroxyphenyl pyruvate dioxygenase (HPPD) enzyme are well established herbicides and HPPD is also a primary enzyme within the tyrosine metabolism pathway in hematophagous arthropods, which is an essential metaboilic pathway post-blood feeding to prevent tyrosine-mediated toxicity. The objective of this study was to characterize the toxicity of triketone, pyrazole, pyrazolone, isoxazole, and triazole herbicides that inhibit HPPD to blood-fed mosquitoes and ticks. Topical exposure of nitisinone to blood-fed Aedes aegypti yielded high toxicity with an LD of 3.81 ng/insect (95% CI: 3.09 to 4.67 ng; Hillslope: 0.97, r: 0.99), yet was non-toxic to non-blood fed (NBF) mosquitoes. The rank order of toxicity was nitisinone > tembotrione > pyrazoxyfen > tebuconazole > mesotrione against blood-fed Ae. Aegypti, but nitisinone was approximately 30-fold more toxic than other chemicals tested. We also assessed the toxicity of HPPD-inhibiting herbicides to the lone star tick, Amblyomma americanum and similarly, nitisinone was toxic to Am. americanum with a lethal time to kill 50% of subjects (LT) of 23 h at 10 μM. Knockdown of the gene encoding the HPPD enzyme was performed through RNA-interference led to significant mortality after blood feeding in both, Ae. aegypti and Am. americanum. Lastly, a fluorescence assay was developed to determine relative quantities of L-tyrosine in Ae. aegypti and Am. americanum treated with HPPD inhibitors. L-tyrosine levels correlated with toxicity with nitisinone exposure leading to increased tyrosine concentrations post-blood feeding. Taken together, these data support previous work suggesting HPPD-inhibitors represent a novel mode of toxicity to mosquitoes and ticks and may represent base scaffolds for development of novel insecticides specific for hematophagous arthropods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2023.105532DOI Listing

Publication Analysis

Top Keywords

aedes aegypti
8
amblyomma americanum
8
hppd enzyme
8
hematophagous arthropods
8
post-blood feeding
8
mosquitoes ticks
8
toxicity nitisinone
8
aegypti americanum
8
toxicity
7
aegypti
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!