First monitoring of resistance and corresponding mechanisms in the green peach aphid, Myzus persicae (Sulzer), to registered and unregistered insecticides in Saudi Arabia.

Pestic Biochem Physiol

Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia. Electronic address:

Published: August 2023

Insecticides are widely used as the primary management strategy for controlling Myzus persicae, the devastating pest ravaging various vegetables, fruits, crops, and ornamentals. This study examined the susceptibility of M. persicae field populations to bifenthrin, fosthiazate, acetamiprid, spirotetramat, afidopyropen, and flonicamid while exploring the possible metabolic mechanisms of resistance. The study findings revealed that M. persicae field populations exhibited susceptible-to-moderate resistance to bifenthrin (resistance ratio (RR) = 0.94-19.65) and acetamiprid (RR = 1.73-12.91), low-to-moderate resistance to fosthiazate (RR = 3.67-17.00), and susceptible-to-low resistance to spirotetramat (RR = 0.70-6.68). However, all M. persicae field populations were susceptible to afidopyropen (RR = 0.44-2.25) and flonicamid (RR = 0.40-2.08). As determined by the biochemical assays, carboxylesterases were involved in the resistance cases to bifenthrin and fosthiazate, whereas cytochrome P450 monooxygenases were implicated in the resistance cases to acetamiprid. However, glutathione S-transferases were not implicated in the documented resistance of M. persicae field populations. Overall, the susceptibility of M. persicae field populations to flonicamid and afidopyropen-two unregistered insecticides in Saudi Arabia-suggests their potential as promising chemicals that can expand the various alternatives available for controlling this devastating pest. Although the detected moderate levels of resistance to bifenthrin, fosthiazate, and acetamiprid indicate a shift in the selection pressure of insecticides for M. persicae due to Saudi regulations, which have resulted in eventual obsolescence of conventional insecticides in favor of novel insecticides. Finally, rotational use of aforementioned insecticides can help in managing insecticide resistance in M. persicae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2023.105504DOI Listing

Publication Analysis

Top Keywords

persicae field
20
field populations
20
bifenthrin fosthiazate
12
resistance
10
persicae
9
myzus persicae
8
unregistered insecticides
8
insecticides saudi
8
devastating pest
8
susceptibility persicae
8

Similar Publications

Industrial hemp, Cannabis sativa L., is an herbaceous annual plant that has recently re-entered crop production both in the field and in greenhouses within the United States. Like many agronomic crops, hemp production faces several insect pest challenges.

View Article and Find Full Text PDF

Function Analysis of Heme Peroxidase Genes, MpPxd2 and MpPxd4, Under Thiacloprid Exposure in the Neonicotinoid-Resistant (Sulzer).

Antioxidants (Basel)

November 2024

Fujian Engineering Research Center for Green Pest Management, Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China.

The green peach aphid, , is a notorious pest worldwide. We collected a field population of the pest (FZQ-F) that exhibited high resistance to neonicotinoids. Exposure to neonicotinoids can induce oxidative damage in animals; however, it remains unclear whether antioxidant enzymes contribute to the innate immune response of neonicotinoid-resistant pests against high doses of insecticides.

View Article and Find Full Text PDF

Nitrogen-containing heterocycles have attracted attention for the development of chemicals because of their many types, high physiological activities, and ease of synthesis. Aphids are severe pests found worldwide that cause serious losses in crop yield and quality every year. In this study, a series of novel dienolone thiazole derivatives were synthesized using dienolone acetate as the parent molecule.

View Article and Find Full Text PDF

Aucuba japonica is widely planted in China for landscaping purposes, often used for decoration in gardens and parks. In October 2023, a leaf blight on A. japonica was observed in Meicheng Park of Nanyang City (32°59'21″ N, 112°32'54″ E), Henan province.

View Article and Find Full Text PDF

Development of a visuo-tactile sensor for non-destructive peach firmness and contact force measurement suitable for robotic arm applications.

Food Chem

March 2025

School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; The National Key Laboratory of Agricultural Equipment Technology, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of on-Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China. Electronic address:

Article Synopsis
  • - The precise measurement of peach firmness is essential for optimizing harvest times, storage strategies, and reducing waste, yet existing technologies struggle with accuracy and robustness in non-destructive testing.
  • - A new visuo-tactile sensor has been developed that can simultaneously measure peach firmness and monitor contact force during a single interaction, making it compatible with future robotic applications in agriculture.
  • - Employing deep neural networks to analyze geometric images, this sensor demonstrated high accuracy in firmness and contact force measurements, making it a promising tool for agricultural robotics with significant potential for reducing damage during fruit handling.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!