The external globus pallidus (GPe) is an essential component of the basal ganglia, a group of subcortical nuclei that are involved in control of action. Changes in the firing of GPe neurons are associated with both passive and active body movements. Aberrant activity of GPe neurons has been linked to motor symptoms of a variety of movement disorders, such as Parkinson's Disease, Huntington's disease and dystonia. Recent studies have helped delineate functionally distinct subtypes of GABAergic GPe projection neurons. However, not much is known about specific molecular mechanisms underlying the development of GPe neuronal subtypes. We show that the transcriptional regulator Lmo3 is required for the development of medial ganglionic eminence derived Nkx2.1 and PV GPe neurons, but not lateral ganglionic eminence derived FoxP2 neurons. As a consequence of the reduction in PV neurons, Lmo3-null mice have a reduced GPe input to the subthalamic nucleus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658356 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2023.07.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!