A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combined iron (III) chloride/sodium citrate with enzymatic hydrolysis for xylo-oligosaccharides and monosaccharides production from poplar. | LitMetric

Combined iron (III) chloride/sodium citrate with enzymatic hydrolysis for xylo-oligosaccharides and monosaccharides production from poplar.

Bioresour Technol

College of Forestry, Northwest A&F University, Yangling 712100, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China. Electronic address:

Published: November 2023

Currently, the production of xylo-oligosaccharides (XOS) from lignocelluloses by chelating system hydrolysis has not been investigated. Herein, iron (III) chloride/sodium citrate (IC/SC) chelating system hydrolysis and xylanase hydrolysis were used to produce XOS from poplar. Then, the delignification of IC/SC-hydrolyzed poplar was performed by p-toluenesulfonic acid (p-TsOH) pretreatment to increase the accessibility of cellulase. The results demonstrated that 42.3% of XOS with an extremely low by-product (xylose/XOS = 0.11) was produced from poplar by 50 mM IC/SC hydrolysis (molar ratio of 1:1, 170 °C, 60 min) and xylanase hydrolysis. The second step IC/SC hydrolysis and xylanase hydrolysis of poplar increased the yield of XOS to 51.3%. Finally, the glucose yield of p-TsOH-pretreated poplar (60% p-TsOH, 70 °C, 30 min) was greatly increased from 37.5% to 83.8% by cellulase hydrolysis with Tween 80 addition. The novel strategy proposed in this work was feasible for XOS and monosaccharides production from poplar.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.129597DOI Listing

Publication Analysis

Top Keywords

xylanase hydrolysis
12
hydrolysis
9
iron iii
8
iii chloride/sodium
8
chloride/sodium citrate
8
monosaccharides production
8
production poplar
8
chelating system
8
system hydrolysis
8
hydrolysis xylanase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!