Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Atmospheric microplastic deposition rates play a crucial role for calculating the input of microplastics in the environment and to further understand pollution patterns. In this study, the spatial and temporal distribution of atmospheric microplastic particles in urban and rural areas of Northern Germany was investigated. Therefore, eleven structurally diverse locations in Hamburg and Mecklenburg-Western Pomerania were equipped with bulk-deposition samplers in triplicates and sampled monthly between August 2019 and July 2020. The resulting 306 samples were treated with hydrogen peroxide (30 %) and sodium hypochlorite (6-14 %) to digest biological organic matter. The filters were subsequently stained with the lipophilic dye Nile Red and underwent visual microplastic identification via fluorescence microscopy. Fragments and fibers were quantified down to a cut-off size of 10 μm. The polymer composition of microplastic particles was investigated along a subset of particles via μ-Raman spectroscopy. The microplastic deposition rate for Northern Germany (89 ± 61 MP/m/day) is in the same order of magnitude as those reported by previous studies. Significant differences in microplastic deposition rates were found between urban and rural sampling sites. Population density was identified as an important factor for greater amounts of microplastics and higher shares of fibers in urban samples. Special attention was given to the canopy cover at two forested sampling sites and an influence of the comb-out effect on atmospheric microplastic deposition was detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.165923 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!