Background: Peripheral nerves can regenerate and restore function after injury but this process is hindered by many factors including chronic denervation, motor end-plate resorption and Schwann cell senescence. Forelimb injury models in rodents are becoming increasingly popular as they more accurately reflect the physiology and biomechanics of upper extremity nerve injuries. However several aspects of this surgical model remain poorly characterized.
New Method: C57Bl/6 mice underwent enumeration of median nerve motor and sensory neuron pools using retrograde labeling with or without nerve transection. Distal histomorphometry of uninjured mouse median nerves was also examined. Baseline reference values of volitional forelimb grip strength measurements were determined and the rate of neural elongation was also estimated.
Results: We identified 1363 ± 165 sensory and 216 ± 16 motor neurons within the uninjured dorsal root ganglia (DRG) and ventral spinal cord, respectively. Eight days following injury, approximately 34% of motoneurons had elongated a distance of 5 mm beyond the repair site 8 days following injury. Volitional grip strength decreased 50% with unilateral median nerve transection and was negligible with contralateral flexor tendon tenotomy.
Comparison With Existing Method: Our spinal cord and DRG harvesting technique presented here was technically straightforward and reliable. Estimates of motor and sensory neuron numbers for the mouse median nerve compared favourably with studies using intramuscular injection of retrograde neurotracer. Histomorphometry data was consistent with and reinforced reference values in the literature.
Conclusions: This study provides data that further develops an increasingly popular surgical model for studying peripheral nerve injury and repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2023.109937 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!