Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionssljb0h87kr46ct4boj0m29mlocintfh): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Hematopoietic progenitor kinase 1 (HPK1) is regarded as a highly validated target in pre-clinical immune oncology. HPK1 has been described as regulating multiple critical signaling pathway in both adaptive and innate cells. In support of this role, HPK1 KO T cells show enhanced sensitivity to TCR activation and HPK1 KO mice display enhanced anti-tumor activity. Taken together, inhibition of HPK1 has the potential to induce enhanced anti-tumor immune response. Herein, we described the discovery of highly potent HPK1 inhibitors starting form a weak HTS hit. Using a structure-based drug design, HPK1 inhibitors exhibiting excellent cellular single-digit nanomolar potency in both proximal (pSLP76) and distal (IL-2) biomarkers along with sustained elevation of IL-2 cytokine secretion were discovered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2023.117423 | DOI Listing |
PLoS One
December 2024
Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America.
R-VK4-116 is currently being developed as a medication to treat opioid use disorder (OUD). To characterize in vitro safety properties of R-VK4-116, metabolic stability in hepatocytes or liver microsomes, metabolite identification, metabolism/transporter-mediated drug interactions, lysosomal perturbation, mitochondrial toxicity, off-target enzyme effects, cellular and nuclear receptor functional assays, electrophysiological assays, CiPA, KINOMEscanTM, plasma protein binding, phospholipidosis and steatosis assays were performed. Overall, R-VK4-116 was metabolically stable in hepatocytes and microsomes.
View Article and Find Full Text PDFJ Med Chem
December 2024
Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States.
Hematopoietic progenitor kinase 1 (HPK1/MAP4K1) represents a high interest target for the treatment of cancer through an immune-mediated mechanism. Herein we present highlights of the drug discovery campaign within the lactam/azalactam series of inhibitors that yielded a small molecule (, PF-07265028), which was advanced to a phase 1 clinical trial (NCT05233436). Key components of the discovery effort included optimization of potency through mitigation of ligand strain as guided by the use of cocrystal structures, mitigation of ADME liabilities (plasma instability and fraction metabolism by CYP2D6), and optimization of kinase selectivity, particularly over immune-modulating kinases with high homology to HPK1.
View Article and Find Full Text PDFJ Med Chem
December 2024
Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China.
Hematopoietic progenitor kinase 1 (HPK1) has emerged as an attractive target for immunotherapy due to its critical role in T cell activation and proliferation. The major challenge in developing HPK1 inhibitors lies in balancing kinase selectivity, pharmacokinetic (PK) properties, and therapeutic efficacy. In this study, we report a series of pyridine-2-carboxamide analogues demonstrating strong HPK1 inhibitory activity in enzymatic and cellular assays, along with good kinase selectivity.
View Article and Find Full Text PDFFuture Med Chem
December 2024
Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China.
Hematopoietic progenitor kinase 1 (HPK1) is a serine-threonine kinase specific to hematopoiesis and a member of the MAP4K family of Ste20-related protein kinases. Targeting HPK1 to ameliorate T cell exhaustion and enhance T cell functions is a promising strategy for clinical immunotherapies. Numerous studies have reported the progress in developing effective HPK1 inhibitors and elucidating their mechanisms of action.
View Article and Find Full Text PDFACS Med Chem Lett
November 2024
Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China.
Hematopoietic progenitor kinase 1 (HPK1) negatively affects T cell activation and proliferation and is a promising target for immunotherapy. Although HPK1 inhibitors have shown promising efficacy in preclinical models, none have been approved for clinical use. One significant challenge in developing an HPK1 inhibitor is the difficulty in designing a potent inhibitor with good kinase selectivity and pharmacokinetic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!