Social media platforms such as Twitter are home ground for rapid COVID-19-related information sharing over the Internet, thereby becoming the favorable data resource for many downstream applications. Due to the massive pile of COVID-19 tweets generated every day, it is significant that the machine-learning-supported downstream applications can effectively skip the uninformative tweets and only pick up the informative tweets for their further use. However, existing solutions do not specifically consider the negative effect caused by the imbalanced ratios between informative and uninformative tweets in training data. In particular, most of the existing solutions are dominated by single-view learning, neglecting the rich information from different views to facilitate learning. In this study, a novel deep imbalanced multi-view learning approach called D-SVM-2K is proposed to identify the informative COVID-19 tweets from social media. This approach is built upon the well-known multiview learning method SVM-2K to incorporate different views generated from different feature extraction techniques. To battle against the class imbalance problem and enhance its learning ability, D-SVM-2K stacks multiple SVM-2K base classifiers in a stacked deep structure where its base classifiers can learn from either the original training dataset or the shifted critical regions identified using the well-known k-nearest neighboring algorithm. D-SVM-2K also realises a global and local deep ensemble learning on the multiple views' data. Our empirical experiments on a real-world labeled tweet dataset demonstrate the effectiveness of D-SVM-2K in dealing with the real-world multi-view class imbalance issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.107232 | DOI Listing |
In the face of growing health challenges, nontraditional sources of data, such as open data, have the potential to transform how decisions are made and used to inform public health policies. Focusing on the COVID-19 pandemic, this article presents a case study employing sentiment analysis on unstructured social media data from Twitter (now X) to gauge public sentiment regarding pandemic-related restrictions. Our study aims to uncover and analyze Jamaican citizens' emotions and opinions surrounding COVID-19 restrictions following an outbreak at a call center in April 2020.
View Article and Find Full Text PDFThis study explores the influence of social media content on societal attitudes and actions during critical events, with a special focus on occurrences in Chile, such as the COVID-19 pandemic, the 2019 protests, and the wildfires in 2017 and 2023. By leveraging a novel tweet dataset, this study introduces new metrics for assessing sentiment, inclusivity, engagement, and impact, thereby providing a comprehensive framework for analyzing social media dynamics. The methodology employed enhances sentiment classification through the use of a Deep Random Vector Functional Link (D-RVFL) neural network, which demonstrates superior performance over traditional models such as Support Vector Machines (SVM), naive Bayes, and back propagation (BP) neural networks, achieving an overall average accuracy of 78.
View Article and Find Full Text PDFJ Med Internet Res
December 2024
BC Centre for Disease Control, Vancouver, BC, Canada.
Background: Social media serves as a vast repository of data, offering insights into public perceptions and emotions surrounding significant societal issues. Amid the COVID-19 pandemic, long COVID (formally known as post-COVID-19 condition) has emerged as a chronic health condition, profoundly impacting numerous lives and livelihoods. Given the dynamic nature of long COVID and our evolving understanding of it, effectively capturing people's sentiments and perceptions through social media becomes increasingly crucial.
View Article and Find Full Text PDFHealth Commun
December 2024
Graduate School of Public Health, San Diego State University.
California remains among a handful of U.S. states with no clause for a personal belief exemption for required vaccines due to passage of SB277.
View Article and Find Full Text PDFJ Med Internet Res
November 2024
School of Information, University of Michigan, Ann Arbor, MI, United States.
Background: Online wellness influencers (individuals dispensing unregulated health and wellness advice over social media) may have incentives to oppose traditional medical authorities. Their messaging may decrease the overall effectiveness of public health campaigns during global health crises like the COVID-19 pandemic.
Objective: This study aimed to probe how wellness influencers respond to a public health campaign; we examined how a sample of wellness influencers on Twitter (rebranded as X in 2023) identified before the COVID-19 pandemic on Twitter took stances on the COVID-19 vaccine during 2020-2022.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!