ANGPTL2 aggravates LPS-induced septic cardiomyopathy via NLRP3-mediated inflammasome in a DUSP1-dependent pathway.

Int Immunopharmacol

Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China. Electronic address:

Published: October 2023

Angiopoietin-like protein 2 (ANGPTL2) was implicated in various cardiovascular diseases; however, its role in lipopolysaccharide (LPS)-related septic cardiomyopathy remains unclear. Herein, mice were exposed to LPS to generate septic cardiomyopathy, and adeno-associated viral vector was employed to overexpress ANGPTL2 in the myocardium. Besides, mice were treated with adenoviral vector to knock down ANGPTL2 in hearts. ANGPTL2 expressions in hearts and cardiomyocytes were upregulated by LPS challenge. ANGPTL2 overexpression aggravated, while ANGPTL2 silence ameliorated LPS-associated cardiac impairment and inflammation. Mechanically, we found that ANGPTL2 activated NLRP3 inflammasome via suppressing DUSP1 signaling, and NLRP3 knockdown abrogated the detrimental role of ANGPTL2 in aggravating LPS-induced cardiac inflammation. Furthermore, DUSP1 overexpression significantly inhibited ANGPTL2-mediated NLRP3 activation, and subsequently improved LPS-related cardiac dysfunction. In summary, ANGPTL2 exacerbated septic cardiomyopathy via activating NLRP3-mediated inflammation in a DUSP1-dependent manner, and our study uncovered a promising therapeutic target in preventing septic cardiomyopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.110701DOI Listing

Publication Analysis

Top Keywords

septic cardiomyopathy
20
angptl2
10
septic
5
cardiomyopathy
5
angptl2 aggravates
4
aggravates lps-induced
4
lps-induced septic
4
cardiomyopathy nlrp3-mediated
4
nlrp3-mediated inflammasome
4
inflammasome dusp1-dependent
4

Similar Publications

Multi-Omics and Network-Based Drug Repurposing for Septic Cardiomyopathy.

Pharmaceuticals (Basel)

January 2025

Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China.

Background/objectives: Septic cardiomyopathy (SCM) is a severe cardiac complication of sepsis, characterized by cardiac dysfunction with limited effective treatments. This study aimed to identify repurposable drugs for SCM by integrated multi-omics and network analyses.

Methods: We generated a mouse model of SCM induced by lipopolysaccharide (LPS) and then obtained comprehensive metabolic and genetic data from SCM mouse hearts using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

This study reports the diagnosis and treatment of a 26-year-old pregnant woman with severe malnutrition combined with acute pyelonephritis causing sepsis, refractory septic shock and multiple organ failure. A female patient, 26 years old, was admitted to hospital mainly due to "menelipsis for more than 19 weeks, nausea and vomiting for 20 days, fever with fatigue for 3 days". At the end of 19 weeks of intrauterine pregnancy, the patient presented with fever accompanied by urinary tract irritation.

View Article and Find Full Text PDF

KW-2449 is a novel multitargeted kinase inhibitor that has been reported to alleviate chronic inflammation and altered immunity during the treatment of autoimmune diseases. The aim of the study was to investigate the effect of KW-2449 on sepsis-induced cardiomyopathy (SIC). A rat model of moderate SIC was induced using the cecal ligation and puncture (CLP) method.

View Article and Find Full Text PDF

Esmolol has been demonstrated to mitigate inflammation damage and T lymphocyte apoptosis in septic cardiomyopathy. It has been established that the activation of α7 nicotinic acetylcholine receptor (nAChR) by cluster of differentiation 4(CD4) T lymphocytes expressing choline acetyltransferase (ChAT) can prevent excessive inflammation and reduce splenocyte apoptosis in septic cardiomyopathy. Given the similar anti-inflammatory effects, we hypothesized that esmolol might be associated with α7 nAChR and thereby exert its cardioprotective functions.

View Article and Find Full Text PDF

A murine model of acute and prolonged abdominal sepsis, supported by intensive care, reveals time-dependent metabolic alterations in the heart.

Intensive Care Med Exp

January 2025

Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium.

Background: Sepsis-induced cardiomyopathy (SICM) often occurs in the acute phase of sepsis and is associated with increased mortality due to cardiac dysfunction. The pathogenesis remains poorly understood, and no specific treatments are available. Although SICM is considered reversible, emerging evidence suggests potential long-term sequelae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!