A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A deep registration method for accurate quantification of joint space narrowing progression in rheumatoid arthritis. | LitMetric

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that leads to progressive articular destruction and severe disability. Joint space narrowing (JSN) has been regarded as an important indicator for RA progression and has received significant attention. Radiology plays a crucial role in the diagnosis and monitoring of RA through the assessment of joint space. A new framework for monitoring joint space by quantifying joint space narrowing (JSN) progression through image registration in radiographic images has emerged as a promising research direction. This framework offers the advantage of high accuracy; however, challenges still exist in reducing mismatches and improving reliability. In this work, we utilize a deep intra-subject rigid registration network to automatically quantify JSN progression in the early stages of RA. In our experiments, the mean-square error of the Euclidean distance between the moving and fixed images was 0.0031, the standard deviation was 0.0661 mm and the mismatching rate was 0.48%. Our method achieves sub-pixel level accuracy, surpassing manual measurements significantly. The proposed method is robust to noise, rotation and scaling of joints. Moreover, it provides misalignment visualization, which can assist radiologists and rheumatologists in assessing the reliability of quantification, exhibiting potential for future clinical applications. As a result, we are optimistic that our proposed method will make a significant contribution to the automatic quantification of JSN progression in RA. Code is available at https://github.com/pokeblow/Deep-Registration-QJSN-Finger.git.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2023.102273DOI Listing

Publication Analysis

Top Keywords

joint space
20
space narrowing
12
jsn progression
12
rheumatoid arthritis
8
narrowing jsn
8
proposed method
8
joint
5
space
5
progression
5
deep registration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!