Mechanism of hexavalent chromium removal (Cr(VI) as CrO) by the weak-base ion exchange (IX) resin ResinTech® SIR-700-HP (SIR-700) from simulated groundwater is assessed in the presence of radioactive contaminants iodine-129 (as IO), uranium (U as uranyl UO), and technetium-99 (as TcO), and common environmental anions sulfate (SO) and chloride (Cl). Batch tests using the acid sulfate form of SIR-700 demonstrated Cr(VI) and U(VI) removal exceeded 97%, except in the presence of high SO concentrations (536 mg/L) where Cr(VI) and U(VI) removal decreased to ≥ 80%. However, Cr(VI) removal notably improved with co-mingled U(VI) that complexes with SO at the protonated amine sites. These U-SO complexes are integral to U(VI) removal, as confirmed by the decrease in U(VI) removal (<40%) when the acid chloride form of SIR-700 was used instead. Solid phase characterization revealed that CrO is removed by IX with SO complexes and/or reduced to amorphous Cr(III)(OH) at secondary alcohol sites. Tc(VII)O and I(V)O also undergo chemical reduction, following a similar removal mechanism. Oxyanion removal preference is determined by the anion reduction potential (CrO>TcO>IO), geometry, and charge density. For these reasons, 39% and 69% of TcO and 17% and 39% of IO are removed in the presence and absence of Cr(VI), respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132165DOI Listing

Publication Analysis

Top Keywords

uvi removal
16
ion exchange
8
crvi uvi
8
removal
6
crvi
5
uvi
5
accumulation mechanisms
4
mechanisms contaminants
4
contaminants weak-base
4
weak-base hybrid
4

Similar Publications

A strategically designed ternary nanohybrid (TNS-PDA/CNT), consisting of titanate nanosheet (TNS) and polydopamine-modified multiwalled carbon nanotube (PDA/CNT composite), was synthesized by the facile hydrothermal method and wet impregnation method for removal of U(VI) from aqueous solution and were characterized by transmission electron microscopy (TEM), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), Raman spectroscopy, Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). TNSs were introduced into the PDA/CNT composite, which effectively averted the agglomeration of the CNT and further exposed more adsorption sites. PDA thin layer exposing more active sites was conducive to enhance adsorption capacity and kinetic.

View Article and Find Full Text PDF

An Amidoxime-functionalized chitosan dual-network hydrogel: Enhanced uranium-water separation capacity.

Int J Biol Macromol

December 2024

Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.

The source and after treatment of uranium, a key aspect of its use as a nuclear fuel, had been a topic of intense debate among developers. Therefore, a novel antimicrobial amidoxime-functionalized chitosan/polyacrylamide dual network hydrogel (CP-AO) had been developed utilizing a straightforward methodology. The results demonstrated excellent adsorption capacity and selectivity for uranium extraction under varying conditions, the U(VI) removal was above 94 % when pH was 4.

View Article and Find Full Text PDF

Influence of enriched nitrate reducing bacteria communities on bacterial community structure and groundwater condition during in situ bioremediation of nitrate in acidic uranium-contaminated groundwater.

Sci Total Environ

December 2024

Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang 421001, Hunan, PR China. Electronic address:

In-situ leaching (ISL) is the predominant technology used in uranium mining currently, although it leads to significant environmental challenges. Nitrates, a key component in leaching agents, not only pose a threat to human health but also impede the bioreduction of U(VI) in uranium-contaminated water. In this study, the nitrate reducing bacterial (NRB) communities adapted to acidic uranium-contaminated groundwater from a site in Northwest China were gained by an enrichment micro-model.

View Article and Find Full Text PDF

Artificial Photosynthetic Assemblies Constructed by NH-UiO-66 Decorated with Spatially Separated Dual Cocatalysts for Enhanced Photocatalytic Uranium Reduction.

Inorg Chem

December 2024

State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.

The phenomenon of rapid migration of photogenerated charges in natural photosynthetic systems has motivated the design of efficient photocatalysts capable of fast charge separation and efficient reaction kinetics for photocatalytically assisted enrichment and separation of uranium U(VI) in uranium wastewater. In this study, we developed a biomimetic photocatalytic system MnO/NH-UiO-66-rGO (M/UiO-rGO) with spatially separated dual cocatalysts. Among them, rGO functions to capture electrons and participates in reduction reactions, while MnO captures holes and participates in oxidation reactions.

View Article and Find Full Text PDF

Spatial microenvironment enhanced photocatalytic reduction of uranyl ions under solar light irradiation.

J Hazard Mater

November 2024

National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China; Engineering Technology Research Center of Nuclear Radiation Detection and Application of Jiangxi Province, East China University of Technology, Nanchang 330013, China. Electronic address:

Photocatalytic reduction of uranyl ions (UO) is an environmentally friendly, energy efficient, and highly effective method for uranium-containing wastewater treatment and uranium recovery. Herein, a novel photocatalytic material CH-8 @NNFO-4 with abundant oxygen vacancies was synthesize by growing Ca(OH) on the surface of Fe doped NaNbO in situ. The Ca(OH) synergizes with the oxygen vacancies, creating a microenvironment that narrows the bandgap and extends the light response range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!