Non-traditional species sensitivity distribution approaches to analyze hazardous concentrations of microplastics in marine water.

J Hazard Mater

Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea. Electronic address:

Published: October 2023

Owing to their ubiquitous nature, microplastics are a major environmental concern. This study reviewed the toxicity data of microplastics in marine water, and analyzed their species sensitivity distribution (SSD) curves and hazardous concentrations (HCs). Toxicity database of no-observed effect concentration (NOEC), 50% effect concentration (EC), and highest observed no-effect concentration (HONEC), and lethal, developing, reproductive, biochemical, and behavioral toxicity endpoints was used. Using 169 chronic NOEC databases, all non-traditional toxicity endpoint databases showed stronger HC values, better fit, and more variable toxicity sensitivity than those derived from traditional values. Moreover, using 426 chronic NOEC, EC, and HONEC data points, HC values calculated from traditional plus HONEC toxicity values showed weaker HC values, slightly better fit, and more variable toxicity sensitivity than those derived from traditional toxicity values. The SSD approach using non-traditional toxicity and marine water toxicity data can expand the marine water toxicity database, including information on SSD curves and HCs of diverse microplastics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132174DOI Listing

Publication Analysis

Top Keywords

marine water
16
toxicity
11
species sensitivity
8
sensitivity distribution
8
hazardous concentrations
8
microplastics marine
8
toxicity data
8
ssd curves
8
toxicity database
8
chronic noec
8

Similar Publications

Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.

View Article and Find Full Text PDF

Morphological, Physiological, and Molecular Responses to Heat Stress in Brassicaceae.

Plants (Basel)

January 2025

Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China.

Food security is threatened by global warming, which also affects agricultural output. Various components of cells perceive elevated temperatures. Different signaling pathways in plants distinguish between the two types of temperature increases, mild warm temperatures and extremely hot temperatures.

View Article and Find Full Text PDF

During routine sampling of northern pike, a male with circular blue-metallic granular spots mainly located on the head and back was identified. Histological investigations presented multifocally thickened epidermis rich in basophilic large structures with a granulated rim and a dense, non-granulated center. Other organs showed no signs of infection.

View Article and Find Full Text PDF

Rose Bengal antigen and smooth lipopolysaccharide (s-LPS) were produced from a field strain of ("homologous" antigens) and from the reference strain S99 ("heterologous" antigens); they are currently used for the diagnosis of brucellosis in cattle, water buffaloes, sheep, goats, and pigs, as recommended in the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (WOAH). "Homologous" and "heterologous" antigens were used in a rapid serum agglutination test (Rose Bengal test, RBT) and a competitive ELISA assay (c-ELISA) to test a panel of sera, blood, and other body fluids (cerebrospinal fluid, pericardial fluid, tracheal fluid, and aqueous humor) collected from 71 individuals belonging to five cetacean species (; ; ; ; and ), which were found stranded on the Italian coastline. Six animals were positive for spp.

View Article and Find Full Text PDF

Hearing loss is one of the most common sensory disorders in humans, and a large number of cases are due to ear cell damage caused by ototoxic drugs including anticancer agents, such as cisplatin. The recent literature reported that hearing loss is promoted by an excessive generation of reactive oxygen species (ROS) in cochlea cells, which causes oxidative stress. Recently, polysaccharides from the cyanobacterium showed many biological activities, including antioxidant activity, suggesting their potential use to combat hearing loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!