AI Article Synopsis

  • ANT DBS is a neuromodulation therapy for patients with difficult-to-treat focal seizures that progress to bilateral tonic-clonic seizures when other treatments fail.
  • In a study of 10 adults, most patients (9 out of 10) experienced over 50% reduction in seizure frequency within 3 months post-surgery, with an average seizure reduction of 73.3% at the last follow-up.
  • The findings suggest that ANT DBS can effectively reduce seizures in patients, particularly those with temporal lobe epilepsy, though the exact optimal lead location for best outcomes remains unclear.

Article Abstract

Background: Deep brain stimulation of the anterior nucleus of the thalamus (ANT DBS) is a neuromodulation therapy for patients with refractory focal seizures evolving into bilateral tonic-clonic seizures when pharmacotherapy as well other neuromodulation techniques including vagus nerve stimulation or responsive neurostimulation have failed.

Objective: We performed a prospective single-center study investigating the clinical efficacy and exact ANT DBS lead location in patients with DRE.

Methods: The primary outcome measure was the proportion of patients with more than 50 % reduction in diary-recorded seizures when compared to three preoperative months (baseline seizure frequency). The close postoperative follow-up was performed every 3 months. The seizure frequency, stimulation settings and adverse events were closely monitored during follow-up visits. We also analyzed the seizure outcome with location of ANT DBS active contacts.

Results: Between May 2020 and October 2022, 10 adult patients with a mean age of 38.5 years (range, 30-48 years) underwent bilateral ANT DBS surgery (mean duration of DRE 28.6 years, range 16-41 years). The median seizure count in three months period preceding surgery (baseline seizure count) was 43.2 (range, 4-150). Nine patients achieved more than 50 % seizure reduction at the last follow-up (mean range 3-33 13.6 months, months). ANT DBS caused seizure reduction 3 months after procedure as well as at last follow-up by 60.4 % and 73.3 %, respectively. Due to relatively small number of studying individuals we cannot precisely locate the area within ANT associated with good clinical outcome. Patients with temporal lobe epilepsy had a remarkable reduction of seizure frequency. No patient suffered transient or permanent neurological deficits.

Conclusions: Clinical efficacy of ANT DBS may support more widespread utilization of this neuromodulation technique especially for seizures originating from temporal lobes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eplepsyres.2023.107199DOI Listing

Publication Analysis

Top Keywords

ant dbs
24
clinical efficacy
12
seizure frequency
12
deep brain
8
brain stimulation
8
seizure
8
baseline seizure
8
years range
8
seizure count
8
seizure reduction
8

Similar Publications

Objective: Stereotactic neuromodulation, such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), have emerged as some of the more promising means for managing drug-resistant epilepsy. This study serves as a comprehensive analysis of DBS of the anterior nucleus of the thalamus (ANT), centromedian thalamic nucleus (CMT), and hippocampus and RNS for seizure reduction in adult intractable epilepsy.

Methods: Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, a systematic review was conducted of PubMed, Cochrane Library, and Embase databases from January 2000 to January 2024 to objectively assess the effectiveness of the various neuromodulation modalities on seizure reduction.

View Article and Find Full Text PDF

Ictal Involvement of the Pulvinar and the Anterior Nucleus of the Thalamus in Patients With Refractory Epilepsy.

Neurology

December 2024

From the Department of Neurology and Neurological Sciences (R.M., E.L.V.S., Z.L., S.N., M.D.-G., R.S.F., J.P.) and Department of Neurosurgery (A.D., V.B.), Stanford University School of Medicine; Department of Neurology (R.M.), University of Southern California, Los Angeles; and California Pacific Medical Center (T.W.), San Francisco.

Background And Objectives: Deep brain stimulation (DBS) targeting the anterior nucleus of the thalamus (ANT) has been shown to be effective in treating some patients with medically refractory epilepsy. However, it remains unknown how seizures spread through the ANT relative to other thalamic nuclei. This study aimed to investigate, through simultaneous recordings from both ANT and pulvinar (PLV) nucleus, their roles in seizure propagation.

View Article and Find Full Text PDF

Purpose: Anterior nucleus of the thalamus (ANT) is the only deep brain stimulation (DBS) target that is approved by the FDA for treatment of drug-resistant epilepsy (DRE). Hippocampus (HC) and centromedian nucleus (CMN) have been reported as potential DBS targets for DRE. This study aimed to assess the effectiveness and predictors of response among DRE patients treated with DBS in general and among ANT, HC and CMN DBS-targets.

View Article and Find Full Text PDF

Deep brain stimulation mitigates memory deficits in a rodent model of traumatic brain injury.

Brain Stimul

December 2024

Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada. Electronic address:

Article Synopsis
  • Traumatic brain injury (TBI) can lead to long-term deficits in attention and memory, and deep brain stimulation (DBS) is being explored as a potential therapy for improving these cognitive impairments.* -
  • The study tested whether early DBS after TBI in male rats can prevent memory decline and promote neuroprotection by evaluating behavioral tests and measuring brain cell health and neurotrophic factors.* -
  • Results showed that while DBS improved performance in some maze tests and increased levels of BDNF and hippocampal cell counts, it did not significantly enhance memory in other tests or reduce inflammatory cytokine levels in the brain.*
View Article and Find Full Text PDF

Introduction: Neuromodulation is an important treatment modality for patients with drug-resistant epilepsy who are not candidates for resective or ablative procedures. However, randomized controlled trials and real-world studies reveal that a subset of patients will experience minimal reduction or even an increase in seizure frequency after neuromodulation. We describe our experience with patients who undergo a second intracranial neuromodulation procedure after unsatisfactory initial response to intracranial neuromodulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!