New in vitro screening system to detect drug-induced liver injury using a culture plate with low drug sorption and high oxygen permeability.

Drug Metab Pharmacokinet

Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan. Electronic address:

Published: October 2023

Drug-induced liver injury (DILI) is a major factor underlying drug withdrawal from the market. Therefore, it is important to predict DILI during the early phase of drug discovery. Metabolic activation and mitochondrial toxicity are good indicators of the potential for DILI. However, hepatocyte function, including drug-metabolizing enzyme activity and mitochondrial function, reportedly decreases under conventional culture conditions; therefore, these conditions fail to precisely detect metabolic activation and mitochondrial toxicity-induced cell death. To resolve this issue, we employed a newly developed cell culture plate with high oxygen permeability and low drug sorption (4-polymethyl-1-pentene [PMP] plate). Under PMP plate conditions, cytochrome P450 (CYP) activity and mitochondrial function were increased in primary rat hepatocytes. Following l-buthionine-sulfoximine-induced glutathione depletion, acetaminophen-induced cell death significantly increased under PMP plate conditions. Additionally, 1-aminobenzotriazole reduced cell death. Moreover, mitochondrial toxicity due to mitochondrial complex inhibitors (ketoconazole, metformin, and phenformin) increased under PMP plate conditions. In summary, PMP plate conditions could improve CYP activity and mitochondrial function in primary rat hepatocytes and potentially detect metabolic activation and mitochondrial toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dmpk.2023.100511DOI Listing

Publication Analysis

Top Keywords

pmp plate
16
plate conditions
16
metabolic activation
12
activation mitochondrial
12
mitochondrial toxicity
12
activity mitochondrial
12
mitochondrial function
12
cell death
12
drug-induced liver
8
liver injury
8

Similar Publications

Background: The purpose of this study was to clarify the differences in the movement of the superficial microchambers and deep macrochambers of the heel fat pad during loading and unloading movements, and to clarify the influence of height and weight on this movement.

Methods: The subjects were 21 healthy adults. The right foot was placed on an evaluation instrument stand made of polymethylpentene (PMP) resin plate, and the left foot was placed on a scale stand used to adjust the amount of load.

View Article and Find Full Text PDF

Shape-Dependent Optical Waveguides and Low-Threshold Lasers from Polymorphic Two-Dimensional Organic Single Crystals.

J Phys Chem Lett

May 2024

Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.

Organic single crystals (OSCs) with uniform morphologies and highly ordered molecular aggregations are promising for high-performance optoelectronic devices, such as organic solid-state lasers (OSSLs), organic light-emitting transistors (OLETs), and organic light-emitting diodes (OLEDs). However, manipulating OSC morphologies and aggregation is challenging. In this study, we synthesized two-dimensional (2D) OSCs of 4,4'-bis[(N-carbazole)styryl]biphenyl (BSBCz) in hexagonal and parallelogram microplate (H-MP and P-MP) forms.

View Article and Find Full Text PDF

Accurate pesticide delivery is a key factor in improving pesticide utilization, which can effectively reduce the use of pesticides and environmental risks. In this study, we developed a nanocarrier preparation method which can be controlled by pH/near-infrared response. Mesoporous molybdenum selenide (MoSe) with a high loading rate was used as the core, poly(acrylic acid) (PAA) with acid response was used as the shell, and prochloraz (Pro) was loaded to form a pH-/near-infrared-responsive core-shell nanosystem (Pro@MoSe@PAA NPs, abbreviated as PMP).

View Article and Find Full Text PDF

The Use of Thioflavin T for the Estimation and Measurement of the Plasma Membrane Electric Potential Difference in Different Yeast Strains.

J Fungi (Basel)

September 2023

Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico.

The use of the cationic, dye thioflavin T (ThT), to estimate the electric plasma membrane potential difference (PMP) via the fluorescence changes and to obtain its actual values from the accumulation of the dye, considering important correction factors by its binding to the internal components of the cell, was described previously for baker's yeast. However, it was considered important to explore whether the method developed could be applied to other yeast strains. Alternative ways to estimate the PMP by using flow cytometry and a multi-well plate reader are also presented here.

View Article and Find Full Text PDF

The contact between the blood and the surface of medical materials causes a series of rejection reactions. In this process, the plasma protein is adsorbed to the surface of materials within seconds and binds to glycoprotein receptors on platelets, causing platelet activation, coagulation cascade, and complement activation to form thrombus, which greatly limits the application of medical materials. In our work, the surface of poly(4-methyl-1-pentene) hollow fiber membranes (PMP HFMs) was coated with a diamond-like carbon (DLC) film by the ion plating method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!