Purified Chlorine Dioxide as an Alternative to Chlorine Disinfection to Minimize Chlorate Formation During Postharvest Produce Washing.

Environ Sci Technol

Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States.

Published: August 2023

The washwater used to wash produce within postharvest washing facilities frequently contains high chlorine concentrations to prevent pathogen cross-contamination. To address concerns regarding the formation and uptake of chlorate (ClO) into produce, this study evaluated whether switching to chlorine dioxide (ClO) could reduce chlorate concentrations within the produce. Because ClO exhibits lower disinfectant demand than chlorine, substantially lower concentrations can be applied. However, ClO can form through several pathways, particularly by reactions between ClO and the chlorine used to generate ClO via reaction with chlorite (ClO) or chlorine that forms when ClO reacts with produce. This study demonstrates that purging ClO from the chlorine and ClO mixture used for its generation through a trap containing ClO can scavenge chlorine, substantially reducing ClO concentrations in ClO stock solutions. Addition of low concentrations of ammonia to the produce washwater further reduced ClO formation by binding the chlorine produced by ClO reactions with produce as inactive chloramines without scavenging ClO. While chlorate concentrations in lettuce, kale, and broccoli exceeded regulatory guidelines during treatment with chlorine, ClO concentrations were below regulatory guidelines for each of these vegetables when treated with ClO together with these two purification measures. Switching to purified ClO also reduced the concentrations of lipid-bound oleic acid chlorohydrins and protein-bound chlorotyrosines, which are exemplars of halogenated byproducts formed from disinfectant reactions with biomolecules within produce.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c00056DOI Listing

Publication Analysis

Top Keywords

clo
19
clo chlorine
12
chlorine
10
chlorine dioxide
8
produce
8
concentrations
8
produce study
8
chlorate concentrations
8
chlorine clo
8
clo concentrations
8

Similar Publications

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

Development and Assessment of a Color-Variable Chlorine Dioxide Slow-Releasing Card for Litchi Preservation.

Foods

January 2025

Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510641, China.

Chlorine dioxide (ClO) gas has attracted considerable attention due to its safety and efficiency. In this study, we successfully developed a color-variable ClO slow-releasing card for postharvest litchi. The optimal ClO slow-releasing card was prepared as follows: Card A was soaked in 2.

View Article and Find Full Text PDF

2,8-Dithia-5-aza-2,6-pyridinophane () has been used as a receptor unit in the construction of the conjugated redox chemosensor 5-ferrocenylmethyl-2,8-dithia-5-aza-2,6-pyridinophane (). In order to further explore the coordination chemistry of , and comparatively, that of its structural analogue 2,11-dithia-5,8-diaza-2,6-pyridinophane (), featuring two secondary nitrogen atoms in the macrocyclic unit, the crystal structures of the new synthesised complexes [Pb()(ClO)]·½CHCN, [Cu()](ClO)·CHCN and [Cd()(NO)]NO were determined by X-ray diffraction analysis. The electrochemical response of towards the metal ions Cu, Zn, Cd, Hg, and Pb was investigated by cyclic voltammetry (CV) in CHCl/CHCN 0.

View Article and Find Full Text PDF

Harnessing LRET in a rationally designed "sandwich" fluorescent probe for selective ClO sensing.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, PR China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China.

Upconversion nanoparticles (UCNPs), as a type of light-emitting nanomaterials excited by near-infrared (NIR) light, can circumvent interference from spontaneous fluorescence and scattered light emitted by biological molecules in sensing applications. Traditional homogeneous core-shell UCNPs struggle to locate the position of luminescent doped ions (such as Tm) within the NaYF matrix, only the luminescent ions close to the surface of the particles can be efficiently quenched, with a low bursting efficiency that produces a considerable background. The full effectiveness energy transfer exists only by sufficiently close proximity between donor and acceptor.

View Article and Find Full Text PDF

This study addresses the critical issue of irreversible oxidation in hypochlorite (ClO⁻) sensing by a phenothiazine-based compound, which typically leads to the probe's degradation and loss of functionality. We introduce a novel fluorescence probe, (2-(5-(10 H-phenothiazin-10-yl)thiophen-2-yl)-1 H-benzo[d]imidazol-6-yl)(phenyl)methanone (PTH-BP), specifically designed to enhance ClO⁻ detection efficiency. PTH-BP exhibits strong aggregation-induced emission (AIE), emitting deep orange fluorescence at 620 nm with a large Stokes shift of 195 nm, and achieves an impressive detection limit of 1 nM in ACN/PBS buffer solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!