A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Fingerprint Age Based on Ozonolysis Kinetics of Unsaturated Triacylglycerol Degradation. | LitMetric

Answering the question, "How old is a fingerprint?", is a highly sought-after aim in forensic science. Despite several decades of studies to find an empirical correlation in fingerprint aging, there has been no reliable method so far. In this study, we attempt to determine the time since deposition (TSD) of aged fingerprints from the chemical profile captured within a matrix-assisted laser desorption/ionization mass spectrometry data set. Our approach is based on the chemical kinetics associated with the ambient ozonolysis of unsaturated triacylglycerols (TGs), a major component in fingerprint lipids. First, ozone concentration and ambient temperature were determined to be the major factors in the degradation of unsaturated TGs. A simple kinetics model is then developed to describe the decay of unsaturated TGs, dictated only by the temperature and ozone concentration. This model is then applied to the degradation of TGs in a mixture of TG standards and multiple individuals' fingerprints. The overall decay of unsaturated TGs follows the pseudo-first-order reaction kinetics, validating our hypothesis; however, there are significant person-to-person variations in the initial abundance of unsaturated TGs and the decay rate, hampering the accurate prediction of TSD unless they are corrected for each individual. Nevertheless, the model's applicability for ambient fingerprint aging data was successfully demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c01918DOI Listing

Publication Analysis

Top Keywords

unsaturated tgs
16
fingerprint aging
8
ozone concentration
8
decay unsaturated
8
unsaturated
6
tgs
6
predicting fingerprint
4
fingerprint age
4
age based
4
based ozonolysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!