Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intracellular reactive oxygen species (ROS) are closely associated with cancer cell types. Therefore, ROS-based pattern recognition is a promising strategy for precise diagnosis of cancer, but such a possibility has never been reported yet. Herein, we proposed an ROS-responsive fluorescent sensor array based on pH-controlled histidine-templated gold nanoclusters (AuNCs@His) to distinguish cancer cell types and their proliferation states. In this strategy, three types of AuNCs@His with diverse fluorescence profiles were first synthesized by only adjusting the pH value. Upon the addition of various ROS, fluorescence quenching of three types of AuNCs@His occurred with different degrees, thereby forming unique optical "fingerprints", which were well-clustered into several separated groups without overlap by principal component analysis (PCA). The sensing mechanism was attributable to the oxidation of AuNCs@His by ROS, as revealed by X-ray photoemission spectroscopy, Fourier transform infrared spectroscopy, H nuclear magnetic resonance spectroscopy, and electrospray ionization mass spectrometry. Based on the ROS-responsive sensing pattern, cancer cell types were successfully differentiated via PCA with 100% accuracy. Additionally, the proposed sensor array exhibited excellent performance in distinguishing the proliferation states of cancer cells, which was supported by the results of the Ki-67 immunohistochemistry assay. Overall, the ROS-responsive fluorescent sensor array can serve as a promising tool for precise diagnosis of cancer, indicating great potential for clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c09320 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!