The insulin superfamily of peptides is essential for homeostasis as well as neuronal plasticity, learning, and memory. Here, we show that insulin-like growth factors 1 and 2 (IGF1 and IGF2) are differentially expressed in hippocampal neurons and released in an activity-dependent manner. Using a new fluorescence resonance energy transfer sensor for IGF1 receptor (IGF1R) with two-photon fluorescence lifetime imaging, we find that the release of IGF1 triggers rapid local autocrine IGF1R activation on the same spine and more than several micrometers along the stimulated dendrite, regulating the plasticity of the activated spine in CA1 pyramidal neurons. In CA3 neurons, IGF2, instead of IGF1, is responsible for IGF1R autocrine activation and synaptic plasticity. Thus, our study demonstrates the cell type-specific roles of IGF1 and IGF2 in hippocampal plasticity and a plasticity mechanism mediated by the synthesis and autocrine signaling of IGF peptides in pyramidal neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10396292PMC
http://dx.doi.org/10.1126/sciadv.adg0666DOI Listing

Publication Analysis

Top Keywords

local autocrine
8
insulin-like growth
8
growth factors
8
igf1 igf2
8
pyramidal neurons
8
plasticity
6
igf1
5
autocrine plasticity
4
plasticity signaling
4
signaling single
4

Similar Publications

Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.

View Article and Find Full Text PDF

Nerve Growth Factor Signaling Promotes Nuclear Translocation of TRAF4 to Enhance Tumor Stemness and Metastatic Dormancy Via C-Jun-mediated IL-8 Autocrine.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.

Tumor necrosis factor receptor-associated factor 4 (TRAF4), an E3 ubiquitin ligase, is frequently overexpressed in tumors. Although its cytoplasmic role in tumor progression is well-documented, the precise mechanisms underlying its nuclear localization and functional contributions in tumor cells remain elusive. This study demonstrated a positive correlation between the expression of nuclear TRAF4 and both tumor grades and stemness signatures in human cancer tissues.

View Article and Find Full Text PDF

Group 1 innate lymphoid cells (ILCs) encompass NK cells and ILC1s, which have non-redundant roles in host protection against pathogens and cancer. Despite their circulating nature, NK cells can establish residency in selected tissues during ontogeny, forming a distinct functional subset. The mechanisms that initiate, maintain, and regulate the conversion of NK cells into tissue-resident NK (trNK) cells are currently not well understood.

View Article and Find Full Text PDF

Cell-autonomous action of in radial migration of cortical projection neurons.

Front Mol Neurosci

December 2024

State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Neuronal radial migration is a fundamental process for cortical development, the disruption of which causes neurological and psychiatric dysfunctions. SLIT2 plays diverse functions in brain development and is a well-known axon guidance molecule. In this study, we investigated the radial migration of projection neurons in the developing cerebral cortex by knockdown (KD) of in mice.

View Article and Find Full Text PDF

Growth hormone (GH) is a pituitary derived endocrine hormone required for normal post-natal growth and development. Hypo or hypersecretion of endocrine GH results in two pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in non-pituitary and tumoral tissues where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!