Although alternative splicing (AS) drives transcriptional responses and cellular adaptation to environmental stresses, its contributions in organ transplantation have not been appreciated. We have shown that carcinoembryonic antigen-related cell adhesion molecule (Ceacam1; ), a transmembrane biliary glycoprotein expressed in epithelial, endothelial, and immune cells, determines donor liver transplant quality. Here, we studied how AS of affects ischemia-reperfusion injury (IRI) in mouse and human livers. We found that the short cytoplasmic isoform increased during early acute and late resolution phases of warm IRI injury in mice. Transfection of Ceacam1-deficient mouse hepatocytes with adenoviral Ceacam1-S mitigated hypoxia-induced loss of cellular adhesion by repressing the Ask1/p-p38 cell death pathway. Nucleic acid-blocking morpholinos, designed to selectively induce Ceacam1-S, protected hepatocyte cultures against temperature-induced stress in vitro. Luciferase and chromatin immunoprecipitation assays identified direct binding of hypoxia-inducible factor-1α (Hif-1α) to the mouse polypyrimidine tract binding protein 1 () promoter region. Dimethyloxalylglycine protected mouse livers from warm IR stress and hepatocellular damage by inhibiting prolyl hydroxylase domain-containing protein 1 and promoting AS of . Last, analysis of 46 human donor liver grafts revealed that positively correlated with pretransplant expression. This also correlated with better transplant outcomes, including reduced , total bilirubin, proinflammatory , cytokines, immune activation markers , and incidence of delayed complications from biliary anastomosis. This translational study identified mouse Hif-1α-controlled AS of , through transcriptional regulation of promoter region, as a functional underpinning of hepatoprotection against IR stress and tissue damage in liver transplantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164245 | PMC |
http://dx.doi.org/10.1126/scitranslmed.adf2059 | DOI Listing |
FEBS J
January 2025
Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.
Alternative splicing (AS) plays an important role in neuronal development, function, and disease. Efforts to analyze the transcriptome of AS in neurons on a wide scale are currently limited. We characterized the transcriptome-wide AS changes in SH-SY5Y neuronal differentiation model, which is widely used to study neuronal function and disorders.
View Article and Find Full Text PDFElife
January 2025
Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
-methyladenosine (mA) in eukaryotic RNA is an epigenetic modification that is critical for RNA metabolism, gene expression regulation, and the development of organisms. Aberrant expression of mA components appears in a variety of human diseases. RNA mA modification in has proven to be involved in sex determination regulated by and may affect X chromosome expression through the MSL complex.
View Article and Find Full Text PDFiScience
January 2025
Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
Increasing evidence suggests that aberrant alternative splicing plays crucial roles in tumorigenesis. However, the function of EZH2 splice variants as well as the mechanism by which EZH2 alternative splicing occurs in hepatocellular carcinoma (HCC) remain elusive. Here, we analyzed both our own and published transcriptomic data, obtaining 19 splice variants of EZH2 in addition to canonical full-length EZH2-A in HCC.
View Article and Find Full Text PDFGenes Genomics
January 2025
Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea.
Background: Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.
Objective: We conducted a transcriptome analysis of G.
Proteomes
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430026, China.
is an aquatic plant with a high ornamental value due to its flower. Despite the release of several versions of the lotus genome, its annotation remains inefficient, which makes it difficult to obtain a more comprehensive knowledge when -omic studies are applied to understand the different biological processes. Focusing on the petaloid of the lotus flower, we conducted a comparative proteomic analysis among five major floral organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!