Implantable Nerve Conduit Made of a Self-Powered Microneedle Patch for Sciatic Nerve Repair.

Adv Healthc Mater

Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu Province, Lanzhou, 730000, P. R. China.

Published: December 2023

Peripheral nerve defects, particularly those of a larger size, pose a significant challenge in clinical practice due to their limited regenerative capacity. To tackle this challenge, an advanced self-powered enzyme-linked microneedle (MN) nerve conduit is designed and fabricated. This innovative conduit is composed of anodic and cathodic MN arrays, which contain glucose oxidase (GOx) and horseradish peroxidase (HRP) encapsulated in ZIF-8 nanoparticles, respectively. Through an enzymatic cascade reaction, this MN nerve conduit generates microcurrents that stimulate the regeneration of muscles, blood vessels, and nerve fibers innervated by the sciatic nerve, eventually accelerating the repair of sciatic nerve injury. It is clear that this self-powered MN nerve conduit will revolutionize traditional treatment methods for sciatic nerve injury and find widespread application in the field of nerve tissue repair.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202301729DOI Listing

Publication Analysis

Top Keywords

nerve conduit
16
sciatic nerve
16
nerve
10
nerve injury
8
conduit
5
implantable nerve
4
conduit self-powered
4
self-powered microneedle
4
microneedle patch
4
sciatic
4

Similar Publications

Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).

View Article and Find Full Text PDF

Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) is characterized by a loss of cellular and axonal integrity, often leading to limited functional recovery and pain. Many PNIs are not amenable to repair with traditional techniques; however, cell therapies, particularly Schwann cells (SCs), offer the promise of neural tissue replacement and functional improvement. Exosomes, which carry cellular signaling molecules, can be secreted by SCs and have shown promise in PNI.

View Article and Find Full Text PDF

A 42-year-old man suffered an avulsion amputation of his right middle finger. He had undergone several surgeries since the age of 24, including amputation plasty and implantation of the injured nerve into fat and bone, but had difficulty returning to work due to persistent severe pain. He underwent nerve capping with an artificial nerve conduit at a university hospital, and his symptoms improved slightly, but immediately flared up again.

View Article and Find Full Text PDF

Amputated neuromas, a common consequence of peripheral nerve injury, can cause significant pain and may impair daily life. Herein, we conducted a retrospective study on patients who underwent a nerve-capping technique using the bioabsorbable nerve conduit Renerve®, with a minimum follow-up period of 6 months. We conducted a retrospective study to assess patients with amputation neuromas of the finger or palm who underwent surgical treatment using the capping technique with the Renerve® conduit between October 2018 and September 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!