Understanding the behaviour of self-assembled systems, from nanoscale building blocks to bulk materials, is a central theme for the rational design of high-performance materials. Herein, we revealed, at different length scales, how the self-assembly of TEMPO-oxidised cellulose nanocrystals (TOCNCs) into rod fractal gels is directed by the complexation of Fe ions on the surface of colloidal particles. Different specificities in Fe binding on the TOCNC surface and conformational changes of the nanocellulose chain were unveiled by paramagnetic NMR spectroscopy. The macroscopic properties of systems presenting different concentrations of TOCNCs and Fe ions were investigated by rheology and microscopy, demonstrating the tunability of the self-assembly of cellulose nanorods driven by Fe complexation. Near-atomistic coarse-grained molecular dynamics simulations were developed to gain microscopic insight into the behaviour of this colloidal system. We found that the formation of different self-assembled architectures is driven by metal-nanocellulose complexation combined with the attenuation of electrostatic repulsion and water structuration around cellulose, leading to different microstructural regimes, from isolated nanorods to disconnected rod fractal clusters and rod fractal gels. These findings lay the foundation to unlock the full potential of cellulose nanocrystals as sustainable building blocks to develop self-assembled materials with defined structural control for a range of advanced applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr01418eDOI Listing

Publication Analysis

Top Keywords

cellulose nanocrystals
12
rod fractal
12
microstructural regimes
8
self-assembly cellulose
8
building blocks
8
fractal gels
8
cellulose
5
study scales
4
scales unveil
4
unveil microstructural
4

Similar Publications

The broader use of botanical pesticides has been limited by shorter residual activity on plants, slower onset of action, and higher costs compared with conventional pesticides. These challenges could be overcome by the development of simple, cost-effective, and long-lasting preventive nanocomposites for botanical pesticides. In this study, we successfully developed a low-cost ethyl cellulose (EC)-based delivery system for the botanical pesticide osthole (OST), designed to provide extended preventive protection against infestations.

View Article and Find Full Text PDF

In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.

View Article and Find Full Text PDF

A short review on polysaccharide-based nanocomposite adsorbents for separation and biomedical applications.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, Arak University, Arak, Iran. Electronic address:

Polysaccharides such as chitosan, alginate, cellulose, and carrageenan have emerged as promising adsorbents due to their biodegradability, abundant availability, and diverse chemical functionality. These biopolymers exhibit promising performance for adsorption of a wide range of pollutants including heavy metals (e.g.

View Article and Find Full Text PDF

Washable Superhydrophobic Cotton Fabric with Photothermal Self-Healing Performance Based on Nanocrystal-MXene.

ACS Appl Mater Interfaces

January 2025

Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China.

Superhydrophobic fabrics suffer from being commonly penetrated by moisture after laundering, seriously deteriorating their water repellency after air drying. Numerous researchers have successfully recovered superhydrophobicity by drying in fluid ovens; however, high energy consumption and equipment dependence limit practical applications. Herein, the superhydrophobic photothermal self-healing cotton fabric (SPS cotton fabric) was fabricated by depositing a composite layer of cellulose nanocrystal-MXene (C-MXene) and polyacrylate (PA) coatings on the cotton cloth.

View Article and Find Full Text PDF

The ability to convert moisture signals into electrical signals through contactless control underpins a wide range of applications, including health monitoring, disaster warning, and energy harvesting. Despite its potential, the effective utilization of low-grade energy remains challenging, as it often requires complex device architectures that limit scalability and integration, particularly in wearable technologies. Here, we present a soft, flexible moisture-electric converter made from cellulose nanocrystals and polyvinyl alcohol composite films, designed for a novel touchless interactive platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!