Background: Pharmacokinetic (PK) data underlying paediatric penicillin dosing remain limited, especially in critical care.
Objectives: The primary objective of the Neonatal and Paediatric Pharmacokinetics of Antimicrobials study (NAPPA) was to characterize PK profiles of commonly used penicillins using data obtained during routine care, to further understanding of PK variability and inform future evidence-based dosing.
Methods: NAPPA was a multicentre study of amoxicillin, co-amoxiclav, benzylpenicillin, flucloxacillin and piperacillin/tazobactam. Patients were recruited with informed consent. Antibiotic dosing followed standard of care. PK samples were obtained opportunistically or at optimal times, frozen and analysed using UPLC with tandem MS. Pharmacometric analysis was undertaken using NONMEM software (v7.3). Model-based simulations (n = 10 000) tested PTA with British National Formulary for Children (BNFC) and WHO dosing. The study had ethical approval.
Results: For the combined IV PK model, 963 PK samples from 370 participants were analysed simultaneously incorporating amoxicillin, benzylpenicillin, flucloxacillin and piperacillin data. BNFC high-dose regimen simulations gave these PTA results (median fT>MIC at breakpoints of specified pathogens): amoxicillin 100% (Streptococcus pneumoniae); benzylpenicillin 100% (Group B Streptococcus); flucloxacillin 48% (MSSA); and piperacillin 100% (Pseudomonas aeruginosa). Oral population PK models for flucloxacillin and amoxicillin enabled estimation of first-order absorption rate constants (1.16 h-1 and 1.3 h-1) and bioavailability terms (62.7% and 58.7%, respectively).
Conclusions: NAPPA represents, to our knowledge, the largest prospective combined paediatric penicillin PK study undertaken to date, and the first paediatric flucloxacillin oral PK model. The PTA results provide evidence supportive of BNFC high-dose IV regimens for amoxicillin, benzylpenicillin and piperacillin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477139 | PMC |
http://dx.doi.org/10.1093/jac/dkad196 | DOI Listing |
BMJ Open
January 2025
Enteric Zoonotic and Vector-Borne Disease Laboratory, Royal Centre for Disease Control, Thimphu, Bhutan.
Objectives: This study aimed to identify the aetiological spectrum, seasonal distribution and antimicrobial resistance patterns of diarrhoeal diseases in Bhutan.
Study Design And Setting: The study used a cross-sectional, retrospective analysis of secondary data gathered through a passive, hospital-based sentinel surveillance for diarrhoeal disease across 12 hospitals, representing Bhutan's demographically diverse regions.
Participants: A total of 3429 participants' data of all age groups who presented with diarrhoea at sentinel hospitals between 1 January 1 2016 and 31 December 2022 were analysed.
Otolaryngol Head Neck Surg
January 2025
Department of Surgery, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA.
Objective: Identify common pathogens and antibiotic resistances in chronic rhinosinusitis patients post-endoscopic sinus surgery presenting with an active sinus infection.
Study Design: Retrospective chart review.
Setting: Single-institution rhinology private practice in Southeast Florida.
PLoS One
January 2025
Department of Reproductive Health, College of Medical and Health Sciences, Dilla University, Dilla, Ethiopia.
Background: Severe acute malnutrition (SAM) is a severe condition causing bilateral pitting edema or signs of wasting in children, with a high mortality risk. An outpatient therapeutic program is recommended for managing SAM children without complications, but there is limited information on recovery time and its determinants.
Objective: This study aims to assess the time to recovery and its predictors among children aged 6-59 months with SAM admitted to the Outpatient therapeutic program in the Borena zone, Oromia region, Southern Ethiopia in 2023.
Rev Alerg Mex
December 2024
Jefe del servicio de Alergia, Hospital Central del Instituto de Previsión Social (IPS), Paraguay.
Objective: To develop a treatment algorithm for patients with penicillin allergy.
Methods: Retrospective study, carried out in adult patients with penicillin allergy, who were in group 3 or 4 of the established classification, and attended the outpatient clinic of the Department of Pulmonology and Allergy of the Central Hospital of the Social Security Institute, between January 2021 and December 2022. Each patient underwent an amoxicillin provocation test, after obtaining informed consent.
J Clin Microbiol
December 2024
Laboratory of Clinical Microbiology, KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Flanders, Belgium.
Determination of antimicrobial resistance (AMR) in pneumococcal isolates is important for surveillance purposes and in a clinical context. Antimicrobial susceptibility testing (AST) of pneumococci is complicated by the need for exact minimal inhibitory concentrations (MICs) of beta-lactam antibiotics. Two next-generation sequencing (NGS) analysis tools have implemented the prediction of AMR in their analysis workflow, including the prediction of MICs: Pathogenwatch (https://pathogen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!