A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modelling biochemical oxygen demand using improved neuro-fuzzy approach by marine predators algorithm. | LitMetric

Biochemical oxygen demand (BOD) is one of the most important parameters used for water quality assessment. Alternative methods are essential for accurately prediction of this parameter because the traditional method in predicting the BOD is time-consuming and it is inaccurate due to inconstancies in microbial multiplicity. In this study, the applicability of four hybrid neuro-fuzzy (ANFIS) methods, ANFIS with genetic algorithm (GA), ANFIS with particle swarm optimization (PSO), ANFIS with sine cosine algorithm (SCA), and ANFIS with marine predators algorithm (MPA), was investigated in predicting BOD using distinct input combinations such as potential of hydrogen (pH), dissolved oxygen (DO), electrical conductivity (EC), water temperature (WT), suspended solids (SS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (T-P) acquired from two river stations, Gongreung and Gyeongan, South Korea. The applicability of multi-variate adaptive regression spline (MARS) in determination of the best input combination was examined. The ANFIS-MPA was found to be the best model with the lowest root mean square error and mean absolute error and the highest determination coefficient. It improved the root mean square error of ANFIS-PSO, ANFIS-GA, and ANFIS-SCA models by 13.8%, 12.1%, and 6.3% for Gongreung Station and by 33%, 25%, and 6.3% for Gyeongan Station in the test stage, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468928PMC
http://dx.doi.org/10.1007/s11356-023-28935-6DOI Listing

Publication Analysis

Top Keywords

oxygen demand
12
biochemical oxygen
8
marine predators
8
predators algorithm
8
predicting bod
8
root square
8
square error
8
anfis
5
modelling biochemical
4
oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!