High-throughput quantitative analysis of the cells' proteomes across multiple conditions such as various perturbations and different time points is essential for gaining insights into treatment-induced biological responses or disease pathological states. The advancements in mass spectrometry instrumentation and isobaric labeling methods provided useful tools to help address such demands. However, the current widely adopted isobaric labeling methods such as tandem mass tag (TMT) and isobaric tags for relative and absolute quantitation (iTRAQ) are based on low-mass reporter ions, which are indistinguishable among different peptide analytes, to achieve relative quantification. Therefore, these methods intrinsically suffer from severe ratio distortion when analyzing complex samples due to peptide coelution and cofragmentation. Here, we developed a novel set of isobaric tags named dimethylated leucine complementary ion (DiLeuC) and relied on complementary ions for relative quantification, in which the complementary ions are the remanent peptide segments after fragmentation in the high-mass range. Since those residual peptide fragments are precursor-specific, they retain the relative abundance information in an interference-free manner even in a complex matrix environment. The quantification accuracy of our method was validated in a two-proteome model where the yeast proteome was spiked with a strong background human proteome as interference. In addition, we also applied this strategy to single-cell proteome analysis, demonstrating its potential utility for sensitive high-throughput quantitative proteomics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729713PMC
http://dx.doi.org/10.1007/s00216-023-04877-3DOI Listing

Publication Analysis

Top Keywords

isobaric tags
12
complementary ions
12
high-throughput quantitative
8
isobaric labeling
8
labeling methods
8
relative quantification
8
isobaric
5
development novel
4
novel isobaric
4
tags enables
4

Similar Publications

The study by Cao aimed to identify early second-trimester biomarkers that could predict gestational diabetes mellitus (GDM) development using advanced proteomic techniques, such as Isobaric tags for relative and absolute quantitation isobaric tags for relative and absolute quantitation and liquid chromatography-mass spectrometry liquid chromatography-mass spectrometry. Their analysis revealed 47 differentially expressed proteins in the GDM group, with retinol-binding protein 4 and angiopoietin-like 8 showing significantly elevated serum levels compared to controls. Although these findings are promising, the study is limited by its small sample size ( = 4 per group) and lacks essential details on the reproducibility and reliability of the protein quantification methods used.

View Article and Find Full Text PDF

Comprehensive global proteome profiling that is amenable to high throughput processing will broaden our understanding of complex biological systems. Here, we evaluated two leading mass spectrometry techniques, Data Independent Acquisition (DIA) and Tandem Mass Tagging (TMT), for extensive protein abundance profiling. DIA provides label-free quantification with a broad dynamic range, while TMT enables multiplexed analysis using isobaric tags for efficient cross-sample comparisons.

View Article and Find Full Text PDF

Winter wild oat (Avena sterilis subsp. ludoviciana (Durieu) Gillet & Magne) has been considered the most common and troublesome weed in wheat fields of Iran. The widespread and continuous use of herbicides has led to the emergence and development of resistant biotypes in A.

View Article and Find Full Text PDF

Chemo-resistance in ovarian cancer is currently a major obstacle to the treatment and recovery of ovarian cancer. Therefore, identifying factors associated with chemo-resistance in ovarian cancer may reverse chemo-sensitization. Using isobaric tags for relative and absolute quantitation (ITRAQ) technology, we found a small molecule peptide with annexin 1 (ANXA1) as a precursor protein.

View Article and Find Full Text PDF

Background: Poa pratensis is a predominant cool-season turfgrass utilized in urban landscaping and ecological management. It is extensively employed in turf construction and in the regulation of ecological environments. However, it is susceptible to powdery mildew, a prevalent disease in humid regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!