The majority of psychogenic nonepileptic seizures (PNESs) are brought on by psychogenic causes, but because their symptoms resemble those of epilepsy, they are frequently misdiagnosed. Although EEG signals are normal in PNES cases, electroencephalography (EEG) recordings alone are not sufficient to identify the illness. Hence, accurate diagnosis and effective treatment depend on long-term video EEG data and a complete patient history. Video EEG setup, however, is more expensive than using standard EEG equipment. To distinguish PNES signals from conventional epileptic seizure (ES) signals, it is crucial to develop methods solely based on EEG recordings. The proposed study presents a technique utilizing short-term EEG data for the classification of inter-PNES, PNES, and ES segments using time-frequency methods such as the Continuous Wavelet transform (CWT), Short-Time Fourier transform (STFT), CWT-based synchrosqueezed transform (WSST), and STFT-based SST (FSST), which provide high-resolution time-frequency representations (TFRs). TFRs of EEG segments are utilized to generate 13 joint TF (J-TF)-based features, four gray-level co-occurrence matrix (GLCM)-based features, and 16 higher-order joint TF moment (HOJ-Mom)-based features. These features are then employed in the classification procedure. Both three-class (inter-PNES versus PNES versus ES: ACC: 80.9%, SEN: 81.8%, and PRE: 84.7%) and two-class (Inter-PNES versus PNES: ACC: 88.2%, SEN: 87.2%, and PRE: 86.1%; PNES versus ES: ACC: 98.5%, SEN: 99.3%, and PRE: 98.9%) classification algorithms performed well, according to the experimental results. The STFT and FSST strategies surpass the CWT and WSST strategies in terms of classification accuracy, sensitivity, and precision. Moreover, the J-TF-based feature sets often perform better than the other two.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/S0129065723500454 | DOI Listing |
Sci Data
January 2025
Department of Engineering Technology, University of Houston, Houston, TX, USA.
Functional near-infrared spectroscopy (fNIRS) is an increasingly popular neuroimaging technique that measures cortical hemodynamic activity in a non-invasive and portable fashion. Although the fNIRS community has been successful in disseminating open-source processing tools and a standard file format (SNIRF), reproducible research and sharing of fNIRS data amongst researchers has been hindered by a lack of standards and clarity over how study data should be organized and stored. This problem is not new in neuroimaging, and it became evident years ago with the proliferation of publicly available neuroimaging datasets.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Integrative Anatomy, Nagoya City University Graduate School of Medicinal Sciences.
Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.
View Article and Find Full Text PDFNeuroimage
January 2025
Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, (TN), Italy.
Transcranial magnetic stimulation (TMS) has the potential to yield insights into cortical functions and improve the treatment of neurological and psychiatric conditions. However, its reliability is hindered by a low reproducibility of results. Among other factors, such low reproducibility is due to structural and functional variability between individual brains.
View Article and Find Full Text PDFJ Neural Eng
January 2025
School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, CHINA.
Objective: Entrainment has been considered as a potential mechanism underlying the facilitatory effect of rhythmic neural stimulation on neurorehabilitation. The inconsistent effects of brain stimulation on neurorehabilitation found in the literature may be caused by the variability in neural entrainment. To dissect the underlying mechanisms and optimize brain stimulation for improved effectiveness, it is critical to reliably assess the occurrence and the strength of neural entrainment.
View Article and Find Full Text PDFPrior research has indicated musicians show an auditory processing advantage in phonemic processing of language. The aim of the current study was to elucidate when in the auditory cortical processing stream this advantage emerges in a cocktail-party-like environment. Participants (n = 34) were aged 18-35 years and deemed to be either a musician (10+-year experience) or nonmusician (no formal training).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!