Diamine ligands are effective structural scaffolds for tuning the reactivity of transition-metal complexes for catalytic, materials, and phosphorescent applications and have been leveraged for biological use. In this work, we report the synthesis and characterization of a novel class of cyclometalated [C^N] Au(III) complexes bearing secondary diamines including a norbornane backbone, (2,3)-,-dibenzylbicyclo[2.2.1]heptane-2,3-diamine, or a cyclohexane backbone, (1,2)-,-dibenzylcyclohexane-1,2-diamine. X-ray crystallography confirms the square-planar geometry and chirality at nitrogen. The electronic character of the conformationally restricted norbornane backbone influences the electrochemical behavior with redox potentials of -0.8 to -1.1 V, atypical for Au(III) complexes. These compounds demonstrate promising anticancer activity, particularly, complex , which bears a benzylpyridine organogold framework, and supported by the bicyclic conformationally restricted diaminonorbornane, shows good potency in A2780 cells. We further show that a cellular response to evokes reactive oxygen species (ROS) production and does not induce mitochondrial dysfunction. This class of complexes provides significant stability and reactivity for different applications in protein modification, catalysis, and therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268950 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.3c02066 | DOI Listing |
Nat Commun
October 2024
CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD.
View Article and Find Full Text PDFChem Sci
September 2024
Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
J Phys Chem B
September 2024
Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
The Hsp90 chaperone is an ATPase enzyme composed of two copies of a three-domain subunit. Hsp90 stabilizes and activates a diverse array of regulatory proteins. Substrates are bound and released by the middle domain through a clamping cycle involving conformational transitions between a dynamic open state and a compact conformationally restricted closed state.
View Article and Find Full Text PDFJ Clin Biochem Nutr
July 2024
Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University Graduate School of Pharmaceutical Sciences, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
Neutrophil extracellular trap (NET) formation is a unique self-defense mechanism of neutrophils; however, it is also involved in many diseases, including atherosclerosis. Resveratrol and catechin are antioxidants with anti-atherosclerotic properties. Here, we examined the effects of resveratrol, catechin, and other related compounds on NET formation.
View Article and Find Full Text PDFOrg Lett
August 2024
Department of Chemistry, University of Basel, Mattenstrasse 22, 4058 Basel, Switzerland.
Phenol-based macrocycles play a fundamental role in supramolecular chemistry, but their size has been rather limited. Here we report a novel class of very large, bowl-shaped macrocycles with a diameter of 21.8 Å.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!