A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comprehensive dissection of meiotic DNA double-strand breaks and crossovers in cucumber. | LitMetric

Comprehensive dissection of meiotic DNA double-strand breaks and crossovers in cucumber.

Plant Physiol

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Published: October 2023

Meiotic recombination drives genetic diversity and crop genome optimization. In plant breeding, parents with favorable traits are crossed to create elite varieties. Different hybridizations produce diverse types of segment reshuffling between homologous chromosomes. However, little is known about the factors that cause hybrid-specific changes in crossovers (COs). Here, we constructed 2 F2 populations from crosses between a semiwild and 2 domesticated cucumber (Cucumis sativus) accessions and examined CO events. COs mainly occurred around genes and differed unevenly along chromosomes between the 2 hybrids. Fine-scale CO distributions were suppressed in regions of heterozygous structural variations (SVs) and were accelerated by high sequence polymorphism. C. sativus RADiation sensitive 51A (CsRAD51A) binding, histone H3 lysine 4 trimethylation (H3K4me3) modification, chromatin accessibility, and hypomethylation were positively associated with global CO landscapes and in local DNA double-strand break (DSB) hotspots and genes. The frequency and suppression of COs could be roughly predicted based on multiomic information. Differences in CO events between hybrids could be partially traced to distinct genetic and epigenetic features and were significantly associated with specific DSB hotspots and heterozygous SVs. Our findings identify the genomic and epigenetic features that contribute to CO formation and hybrid-specific divergence in cucumber and provide theoretical support for selecting parental combinations and manipulating recombination events at target genomic regions during plant breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602612PMC
http://dx.doi.org/10.1093/plphys/kiad432DOI Listing

Publication Analysis

Top Keywords

dna double-strand
8
plant breeding
8
dsb hotspots
8
epigenetic features
8
comprehensive dissection
4
dissection meiotic
4
meiotic dna
4
double-strand breaks
4
breaks crossovers
4
crossovers cucumber
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!