Leukotrienes are important icosanoids group involved in a lot of normal and pathological states. Montelukast (MK) is a selective cysteinyl leukotriene receptor (Cys LT1) antagonist. Purpose. The purpose of the study is to observe the influence of MK on renal damage caused by experimental diabetes in rats. The experiment was carried out on four groups of adult male Wistar rats. Lot I was a witness and received 1.5ml of physiological saline ip. in unique dose on the first day of the experiment. Lots II and III have been caused experimental diabetes by streptozotocin (STZ) administration of 60mg/kg ip. in the unique dose. Lot III also received MK daily 10mg/kg/day daily 8weeks.Lot IV received only MK 10mg/kg/day daily 8 weeks. After eight weeks all animals were anesthetized and were sacrificed. The following pathological modifications were observed: tubular injury, glomerular hypertrophy and lesions, leukocytes infiltration. Obtained data showed that MK has significantly reduced the intensity of glomerular lesions (score 3.50+/-0.21 in STZ lot vs. 2.50+/-0.17 in STZ+MK lot p<0.01) and tubular damages. Renal interstitial leukocyte infiltration in animals with diabetes has been also reduced by MK. MK has a partially protective action against the lesions produced by experimental diabetes.
Download full-text PDF |
Source |
---|
Med Phys
December 2024
Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in oncology (NCRO), Heidelberg, Germany.
Background: Carbon-ion radiotherapy provides steep dose gradients that allow the simultaneous application of high tumor doses as well as the sparing of healthy tissue and radio-sensitive organs. However, even small anatomical changes may have a severe impact on the dose distribution because of the finite range of ion beams.
Purpose: An in-vivo monitoring method based on secondary-ion emission could potentially provide feedback about the patient anatomy and thus the treatment quality.
Metab Brain Dis
December 2024
Department of Basic Science, School of Science and Technology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.
Diabetes Mellitus is a metabolic disorder characterized by high blood glucose levels, causing significant morbidity and mortality rates. This study investigated the antidiabetic, neuroprotective, and antioxidant effects of ethanol extracts of Parkia biglobosa (PB) leaves and seeds in streptozotocin (STZ)-induced diabetic rats. The administration of STZ significantly elevated fasting blood glucose levels (FBGL) to 355-400Â mg/mL compared to 111Â mg/mL in normal controls, indicating hyperglycemia.
View Article and Find Full Text PDFJ Clin Immunol
December 2024
Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy.
Background: Activated Phosphoinositide 3-Kinase (PI3K) δ Syndrome (APDS), an inborn error of immunity due to upregulation of the PI3K pathway, leads to recurrent infections and immune dysregulation (lymphoproliferation and autoimmunity).
Methods: Clinical and genetic data of 28 APDS patients from 25 unrelated families were collected from fifteen Italian centers.
Results: Patients were genetically confirmed with APDS-1 (n = 20) or APDS-2 (n = 8), with pathogenic mutations in the PIK3CD or PIK3R1 genes.
Elife
December 2024
Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States.
The IncRNA was initially believed to be dispensable for physiology due to the lack of observable phenotypes in knockout (KO) mice. However, our study challenges this conclusion. We found that both KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis.
View Article and Find Full Text PDFLangmuir
December 2024
State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China.
pH-sensitive lipids are important components of lipid nanoparticles, which enable the targeted delivery and controlled release of drugs. Understanding the mechanism of pH-triggered drug release at the molecular level is important for the rational design of ionizable lipids. Based on a recently reported pH-switchable lipid, named SL2, molecular dynamics (MD) simulations were employed to explore the microscopic mechanism behind the membrane destabilization induced by the conformational change of pH-switchable lipids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!