Although highly charged polyanions, such as inositol hexaphosphate, have been clearly shown to decrease the solubility of deoxyhemoglobin S, the effect of 2,3-diphosphoglycerate (DPG), the endogenous allosteric effector within the red cell, has been more controversial. In this work we have compared the effect of DPG on the solubility of native deoxyhemoglobin S and a derivative in which the DPG binding site is blocked by cross-linking the two beta 82 lysine residues. At pH 6.6 and 30 degrees C the solubility of deoxyhemoglobin S was found to be decreased by 15% (i.e., from 18.8 to 16.0 g/dl) in the presence of saturating concentrations of DPG. Under the same conditions DPG had no effect on the solubility of the cross-linked derivative. This result establishes unequivocally that the binding of DPG within the beta cleft directly facilitates the polymerization of deoxyhemoglobin S. Under physiological conditions, the solubility of deoxyhemoglobin S was found to be decreased by 6% in the presence of an equimolar concentration of DPG. A solubility decrease of this magnitude is sufficient to enhance the tendency of SS cells to sickle and may exacerbate the clinical symptoms of sickle cell disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9861(86)90006-8DOI Listing

Publication Analysis

Top Keywords

solubility deoxyhemoglobin
16
dpg solubility
12
deoxyhemoglobin decreased
8
dpg
7
deoxyhemoglobin
6
solubility
6
23-diphosphoglycerate solubility
4
deoxyhemoglobin highly
4
highly charged
4
charged polyanions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!