Zebrafish regulatory genomic resources for disease modelling and regeneration.

Dis Model Mech

Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.

Published: August 2023

AI Article Synopsis

  • The zebrafish is gaining traction as a valuable disease model due to its rapid development, ease of genetic manipulation, and similarities in disease-related genes with humans.
  • Research is increasingly focusing on non-coding mutations, highlighting the need for genomic annotation maps for zebrafish, which aids in understanding regulatory elements shared with human diseases.
  • Recent initiatives like DANIO-CODE are creating standardized zebrafish genomics resources, emphasizing the integration of multiomic data and single-cell analysis tools to deepen our understanding of human disease mechanisms.

Article Abstract

In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy genetic manipulation, simplicity for imaging, and sharing conserved disease-associated genes and pathways with those of human. In parallel, studies of disease mechanisms are increasingly focusing on non-coding mutations, which require genome annotation maps of regulatory elements, such as enhancers and promoters. In line with this, genomic resources for zebrafish research are expanding, producing a variety of genomic data that help in defining regulatory elements and their conservation between zebrafish and humans. Here, we discuss recent developments in generating functional annotation maps for regulatory elements of the zebrafish genome and how this can be applied to human diseases. We highlight community-driven developments, such as DANIO-CODE, in generating a centralised and standardised catalogue of zebrafish genomics data and functional annotations; consider the advantages and limitations of current annotation maps; and offer considerations for interpreting and integrating existing maps with comparative genomics tools. We also discuss the need for developing standardised genomics protocols and bioinformatic pipelines and provide suggestions for the development of analysis and visualisation tools that will integrate various multiomic bulk sequencing data together with fast-expanding data on single-cell methods, such as single-cell assay for transposase-accessible chromatin with sequencing. Such integration tools are essential to exploit the multiomic chromatin characterisation offered by bulk genomics together with the cell-type resolution offered by emerging single-cell methods. Together, these advances will build an expansive toolkit for interrogating the mechanisms of human disease in zebrafish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417509PMC
http://dx.doi.org/10.1242/dmm.050280DOI Listing

Publication Analysis

Top Keywords

annotation maps
12
regulatory elements
12
genomic resources
8
maps regulatory
8
single-cell methods
8
zebrafish
7
zebrafish regulatory
4
regulatory genomic
4
disease
4
resources disease
4

Similar Publications

This study evaluates the feasibility of using Haralick texture analysis on low-field, T2-weighted MRI images for detecting prostate cancer, extending current research from high-field MRI to the more accessible and cost-effective low-field MRI. A total of twenty-one patients with biopsy-proven prostate cancer (Gleason score 4+3 or higher) were included. Before transperineal biopsy guided by low-field (58-74mT) MRI, a radiologist annotated suspicious regions of interest (ROIs) on high-field (3T) MRI.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, with increasing global incidence and have poor prognosis. Tumour-infiltrating lymphocytes (TILs) are recognized as a key prognostic indicator and play a vital role in OSCC grading. However, current methods for TILs quantification are based on subjective visual assessments, leading to inter-observer variability and inconsistent diagnostic reproducibility.

View Article and Find Full Text PDF

Background: Tissue clearing combined with light-sheet microscopy is gaining popularity among neuroscientists interested in unbiased assessment of their samples in 3D volume. However, the analysis of such data remains a challenge. ClearMap and CellFinder are tools for analyzing neuronal activity maps in an intact volume of cleared mouse brains.

View Article and Find Full Text PDF

Summary: Elemental imaging provides detailed profiling of metal bioaccumulation, offering more precision than bulk analysis by targeting specific tissue areas. However, accurately identifying comparable tissue regions from elemental maps is challenging, requiring the integration of hematoxylin and eosin (H&E) slides for effective comparison. Facilitating the streamlined co-registration of whole slide images (WSI) and elemental maps, TRACE enhances the analysis of tissue regions and elemental abundance in various pathological conditions.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) is a complex psychiatric condition that emerges following exposure to trauma and significantly affects daily functioning. Current research is focused on identifying effective treatments for PTSD. Advances in bioinformatics provide opportunities to elucidate the underlying mechanisms of PTSD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!