Background Colorectal carcinoma (CRC) is the second-leading cause of cancer-related death. Despite the combined (surgery, chemotherapy, radiotherapy, and immunotherapy) modalities of treatment, the prognosis remains poor, mostly because of recurrence and distant metastasis. Cancer stem cells (CSC) are thought to be responsible for the development and spread of tumors. Hence, targeted therapy against these cells hopes to reduce the chance of recurrence and metastasis and improve the prognosis. Many immune markers have been identified to detect CSC in CRC. Here, we tried to assess the immunohistochemical expression of the stem cell marker CD133 in colorectal carcinoma and its correlation with various pathological parameters. Methodology A total of 51 cases of CRC were analyzed. Immunohistochemistry for CD133 was done after standardization in our laboratory. Expression status was decided based on the total score obtained by multiplying the intensity score by the percentage score. CD133 expression was correlated with the age and gender of the patient, tumor location, histological grade, extent of invasion, lymphovascular invasion (LVI), perineural invasion (PNI), and nodal status. Results High CD133 expression was seen in 21 (41.17%) cases. There was no significant association between CD133 expression and the pathological parameters except the tumor site. CD133 expression was significantly higher as we moved from the proximal colon to the rectum. Conclusions CD133 expression was significantly higher in the distal part of the large intestine as compared to the proximal part. But there was no linear correlation between CD133 expression and histological grade, extent of invasion, or nodal status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387822 | PMC |
http://dx.doi.org/10.7759/cureus.41242 | DOI Listing |
Cell Commun Signal
January 2025
Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
The RNase activity of MCPIP1 is essential for regulating cellular homeostasis, proliferation, and tumorigenesis. Our study elucidates the effects of downregulation of MCPIP1 expression and an RNase-inactivating mutation (D141N) on normal epithelial kidney cells, indicating that MCPIP1 expression is a key factor that suppresses neoplastic transformation. We observed that either expression downregulation or mutation of MCPIP1 significantly increased its clonogenicity and altered the expression of cancer stem cell (CSC) markers and factors involved in epithelial-to-mesenchymal transition (EMT).
View Article and Find Full Text PDFJ Clin Transl Hepatol
January 2025
Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
Background And Aims: Hepatitis B virus (HBV) infection contributes to hepatocellular carcinoma (HCC) tumorigenesis, drug resistance, and recurrence, although the underlying molecular mechanisms remain unclear. Recent studies suggest that HBV infection may be associated with liver cancer stem cells (LCSCs), but the exact mechanisms are yet to be resolved. In this study, we aimed to analyze the role of HBV infection in regulating the stemness of HCCs, which is closely linked to drug resistance.
View Article and Find Full Text PDFSci Rep
January 2025
Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
Parietal Epithelial Cells (PECs) activation and proliferation are common to several distinct forms of glomerulopathies. Due to several stimuli, PECs can change to a progenitor (CD24 and CD133/2) or a pro-sclerotic (CD44) phenotype. In addition, PECs, which are constantly exposed to filtered albumin, are known to be involved in albumin internalization, but how this mechanism occurs is unknown.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China.
Tumor cell stemness plays a pivotal role in generating functional heterogeneity within tumors and is implicated in essential processes such as drug resistance, metastasis, and cell proliferation. Therefore, creating novel tumor diagnostic techniques and therapeutic plans requires a knowledge of the possible processes that preserve the stem cell-like qualities of cancers. Bioinformatics analysis of NOLC1 expression in lung adenocarcinoma (LUAD) and prediction of its upstream transcription factors and their binding sites were completed.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States.
Sickle cell disease (SCD) is a devastating hemolytic disease, marked by recurring bouts of painful vaso-occlusion, leading to tissue damage from ischemia/reperfusion pathophysiology. Central to this process are oxidative stress, endothelial cell activation, inflammation, and vascular dysfunction. The endothelium exhibits a pro-inflammatory, pro-coagulant, and enhanced permeability phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!