In continuation of our interest in identifying new α-glucosidase inhibitors with potential to become antidiabetic drugs, this work focuses on the study of 4-(dimethylaminoalkyl)piperazine-1-carbodithioate derivatives as α-glucosidase inhibitors. The eight heterocyclic piperazine-dithiocarbamate complexes studied in this work contain a variety of substitutions on their benzene ring exhibiting potent, noncompetitive inhibition of α-glucosidase. Dithiocarbamate and piperazine moieties are important pharmacophores with promising therapeutic prospects featuring facilitated drug delivery due to their lipophilic nature in addition to their α-glucosidase inhibitory activity. Enzyme kinetics, molecular dynamics simulations, and docking studies revealed that the target compounds bind to a new allosteric site that is located near the active site of α-glucosidase. Majority of molecular interactions of the compounds with the enzyme are mediated by hydrophobic contacts in addition to a number of important polar interactions. The current work identifies a number of chemical groups in the compounds that are responsible for potent inhibition of α-glucosidase. Moreover, it also provides new insights into understanding α-glucosidase inhibition by dithiocarbamate and piperazine-containing compounds that can be promising for development of new antidiabetic drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390107PMC
http://dx.doi.org/10.55730/1300-0527.3453DOI Listing

Publication Analysis

Top Keywords

α-glucosidase
8
chemical groups
8
α-glucosidase inhibitors
8
antidiabetic drugs
8
inhibition α-glucosidase
8
4-dimethylaminoalkylpiperazine inhibitors
4
inhibitors α-glucosidase
4
α-glucosidase allosteric
4
allosteric enzyme
4
inhibition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!