A series of indole (In) and carbazole (Cz) derivative monomers have been synthesized, such as 4-[3-carbazolyl] indole (4In-3Cz), 5-[3-carbazolyl] indole (5In-3Cz), 6-[3-carbazolyl] indole (6In-3Cz), 7-[3-carbazolyl] indole (7In-3Cz). The comonomers synthesized by Stille coupling reaction were characterized by H-NMR and elemental analysis. Potentiodynamic method was used for electropolymerization of comonomers, Indole, Cz, and the mixture of In and Cz. Electrochemical activities of resulting P[4In-3Cz], P[5In-3Cz], P[6In-3Cz], P[7In-3Cz], polyindole (PIn), polycarbazole (PCz) and P[In-co-Cz] films were investigated comparatively by CV at different scan rates, electrochemical impedance spectroscopy (EIS) and spectroelectrochemical measurements. The ionization potentials, I, specific capacitance, C, and optical band gap, E, of copolymers were obtained from these measurements. In order to gain some preliminary information on the structure of the copolymers, DFT analysis was performed and dimers and tetramers were optimized. Results suggested that, in order to obtain an In-Cz copolymer with low oxidation potential and band gap, indole ring should be substituted through 5 position to the 3 position of Cz. If high specific capacitance value or high conductivity are desired, P[4In-3Cz] and P[6In-3Cz] are the best copolymers, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390172PMC
http://dx.doi.org/10.55730/1300-0527.3471DOI Listing

Publication Analysis

Top Keywords

indole
8
indole carbazole
8
specific capacitance
8
band gap
8
synthesis characterization
4
characterization series
4
series conducting
4
conducting polymers
4
polymers based
4
based indole
4

Similar Publications

Nicotine, the main toxic component of tobacco, directly or indirectly causes adverse effects on the liver metabolism. Melatonin, secreted by the pineal gland, has anti-apoptotic activity as well as antioxidant activity. The aim of this study was to reveal the antiapoptotic effects of melatonin in rats with experimentally induced chronic liver damage with nicotine.

View Article and Find Full Text PDF

The microbiota-gut-brain axis is a pivotal medium of crosstalk between the central nervous system (CNS) and the gastrointestinal tract. It is an intricate network of synergistic molecular pathways that exert their effects far beyond their local vicinity and even affect the systemic functioning of the body. The current review explores the involvement of the gut-brain axis (GBA) in the functioning of the nervous system, with a special emphasis on the neurodegeneration, cognitive decline, and neuroinflammation that occur in Alzheimer's disease (AD) and Parkinson's disease (PD).

View Article and Find Full Text PDF

Purpose: During fixed orthodontic treatment, oral hygiene is difficult to ensure and can easily lead to an imbalance in the oral micro-ecological balance. In this study, based on the adhesive properties of polydopamine (PDA) and the good antimicrobial and remineralization properties of carboxymethyl chitosan (CMC) and xylitol (Xy), new nanocomposites with both antimicrobial and remineralization capabilities were prepared to coat on orthodontic brackets.

Methods: Composite carbon dots (CDs) were synthesized using carboxymethyl chitosan and xylitol, we characterized them and the antimicrobial properties of the CMC-Xy-CDs were investigated by co-cultivation with S.

View Article and Find Full Text PDF

The continued prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains, particularly against first-line antitubercular (anti-TB) drugs, presents an impending public health threat that necessitates the exploration and development of New Chemical Entities (NCEs). In search of new anti-TB leads, a library of ethyl 5-(1-benzyl-1H-indol-5-yl)isoxazole-3-carboxylates were generated through a strategy of scaffold hopping from the proven isoxazole-3-carboxylate-based anti-TB pharmacophore. We evaluated their antibacterial potential against a panel of pathogenic bacteria and MtbH37Rv strains.

View Article and Find Full Text PDF

Kawasaki disease (KD) has emerged as the leading cause of acquired heart disease in children, primarily due to the absence of highly sensitive and specific biomarkers for early and accurate diagnosis. To address this issue, a simple and comprehensive targeted metabolomics method employing ultra high-performance liquid chromatography coupled with Q-TRAP mass spectrometry has been developed to identify new metabolite biomarkers for KD. This method enables the simultaneous quantification of 276 metabolites, covering 60 metabolic pathways, with a particular emphasis on metabolites relevant to KD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!