Background: Osteonecrosis of the femoral head (ONFH) is an ischemic disease characterized by the impairment of angiogenesis. We have previously elucidated the role of tsRNAs and BMSC exosomes in ONFH, but whether tsRNA-modified BMSC exosomes promote angiogenesis in ONFH remains unclear.
Methods: The expression of angiogenesis-related tsRNA in plasma exosomes from ONFH patients was examined by q-PCR. The function of tsRNA in HUVECs was identified by CCK-8 and angiogenesis assay. Exosomes purified from tsRNA-15797 overexpressed BMSCs were cocultured with HUVECs to examine their role in angiogenesis. The molecule mechanism of tsRNA-15797-modified exosomes was explored by RNA sequencing, dual-luciferase assay, and immunofluorescence.
Results: A tRNA-derived small RNA tsRNA-15797 was down-regulated in plasma exosomes of ONFH patients. We found the effects of BMSCs-derived exosomes on accelerating HUVECs angiogenesis and migration, which were further enhanced after overexpressing tsRNA-15797. Besides, overexpression of tsRNA-15797 would lead to down-regulation of LFNG correlated with angiogenesis. tsRNA-15797 could directly interact with LFNG. We demonstrated that LNFG overexpression weakened the pro angiogenic and migratory effects of tsRNA-15797-modified BMSCs-derived exosomes.
Conclusion: We successfully constructed tsRNA-15797-modified BMSC-derived exosomes and demonstrated that it induced the angiogenesis of HUVECs by targeting the down-regulation of LFNG. Thus, tsRNA-15797-loaded BMSCs-derived exosomes may be a potential target therapy drug for ONFH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388130 | PMC |
http://dx.doi.org/10.55730/1300-0152.2654 | DOI Listing |
Genomics
January 2025
Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China. Electronic address:
Osteonecrosis of the femoral head (ONFH) is a destructive bone disease, and overuse of alcohol is one of the major contributing factors. Although mesenchymal stem cells (MSCs) and their exosomes have been reported to attenuate ONFH, the potential mechanisms of alcohol-induced ONFH (AONFH) are unclear. Here, we isolated and identified human umbilical cord MSCs-derived exosomal (hucMSCs-exos) miR-25-3p.
View Article and Find Full Text PDFJ Orthop Surg Res
November 2024
Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606- 8507, Japan.
Ann Med
December 2024
Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic disease with a high disability rate. Long-term administration of steroids is the most common pathogenic factor for non-traumatic ONFH. Early diagnosis of steroid-induced osteonecrosis of the femoral head (SONFH) is difficult and mainly depends on imaging.
View Article and Find Full Text PDFJ Transl Med
October 2024
Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China.
Background: Osteonecrosis of the femoral head (ONFH) significantly impacts young and middle-aged adults, with steroid use implicated in many cases. Traditional treatments have limited efficacy, prompting a shift towards innovative approaches, such as stem cell therapy, offering less invasive regenerative solutions.
Methods: Using bibliometric analysis from 1997 to 2023, we identified 392 articles on stem cell therapy for ONFH from the Web of Science Core Collection and analysed them using VOSviewer and CiteSpace to identify key trends and research directions.
J Nanobiotechnology
October 2024
Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!