On the osmotic pressure of cells.

QRB Discov

Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.

Published: July 2022

The chemical potential of water () provides an essential thermodynamic characterization of the environment of living organisms, and it is of equal significance as the temperature. For cells, is conventionally expressed in terms of the osmotic pressure (π). We have previously suggested that the main contribution to the intracellular π of the bacterium is from soluble negatively-charged proteins and their counter-ions. Here, we expand on this analysis by examining how evolutionary divergent cell types cope with the challenge of maintaining π within viable values. Complex organisms, like mammals, maintain constant internal π ≈ 0.285 osmol, matching that of 0.154 M NaCl. For bacteria it appears that optimal growth conditions are found for similar or slightly higher π (0.25-0.4 osmol), despite that they represent a much earlier stage in evolution. We argue that this value reflects a general adaptation for optimising metabolic function under crowded intracellular conditions. Environmental π that differ from this optimum require therefore special measures, as exemplified with gram-positive and gram-negative bacteria. To handle such situations, their membrane encapsulations allow for a compensating turgor pressure that can take both positive and negative values, where positive pressures allow increased frequency of metabolic events through increased intracellular protein concentrations. A remarkable exception to the rule of 0.25-0.4 osmol, is found for halophilic archaea with internal π ≈ 15 osmol. The internal organization of these archaea differs in that they utilize a repulsive electrostatic mechanism operating only in the ionic-liquid regime to avoid aggregation, and that they stand out from other organisms by having no turgor pressure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392628PMC
http://dx.doi.org/10.1017/qrd.2022.3DOI Listing

Publication Analysis

Top Keywords

osmotic pressure
8
internal ≈
8
025-04 osmol
8
turgor pressure
8
pressure cells
4
cells chemical
4
chemical potential
4
potential water
4
water essential
4
essential thermodynamic
4

Similar Publications

Mechanisms of microplastic generation from polymer-coated controlled-release fertilizers (PC-CRFs).

J Hazard Mater

January 2025

Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, USA; Missouri Water Center, University of Missouri, Columbia, USA. Electronic address:

Polymer-coated controlled-release fertilizers (PC-CRFs) are valued for nutrient efficiency, but concerns remain about the long-term impacts of their plastic coatings on soil health. This study investigates the physicochemical characteristics of two commercially available PC-CRFs, type A and B, and their changes during nutrient release. Accelerated nutrient release experiments were conducted for 25 d in ultrapure water (free water) and saturated soil with five wet-dry cycles.

View Article and Find Full Text PDF

Entropy generation and water conservation in the mammalian nephron.

J Comp Physiol B

January 2025

Departamento de Fisiologia, Instituto de Biociências da Universidade de São Paulo, São Paulo, Brazil.

During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation.

View Article and Find Full Text PDF

The characteristics of temperature-responsive ionic liquids on the integrated operational effectiveness of water reclamation from semiconductor wastewater using forward osmosis.

Chemosphere

December 2024

Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan, ROC; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33323, Taiwan, ROC; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan, ROC. Electronic address:

Large amounts of wastewater are produced from semiconductor manufacturing, and the production energy consumption has skyrocketed with its global demand in recent years. Forward osmosis (FO) provides unique merits in reclaiming the wastewater if suitable draw solutes with high water flux, low leakage, and limited energy requirement in regeneration are available. Two lower critical solution temperature-ionic liquids (LCST-ILs), tetrabutylphosphonium trimethylbenzensulfonate ([P][TMBS]) and tetrabutylphosphonium maleate ([P][Mal]) were synthesized and systematically assessed as recycled draw solutes in FO for the water reclamation from the wastewater of Si-ingot sawing.

View Article and Find Full Text PDF

This review focuses on the intricate water relationships between internal and external tissues in growing fruits within the framework of the epidermal growth control hypothesis. It considers the components of water potential, including turgor pressure and osmotic potential of both internal and external tissues, taking into account factors such as fruit growth rate, sugar accumulation, cell wall metabolism, and climacteric. It also examines the effects of environmental conditions, genetic factors, and physiological influences in modifying water relations.

View Article and Find Full Text PDF

The adverse effects of nanosilver on fish gills: A critical review on ecotoxicity and underlying mechanism.

Chemosphere

December 2024

Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China. Electronic address:

The environmental safety and health impacts of nanosilver have attracted much attention due to their continuous detection in water. Although the effects of nanosilver on aquatic organisms have been reported, the ecotoxicity and underlying mechanism of nanosilver in aquatic organisms are not fully understood. Fish gills are the primary target organs of pollutant exposure in aquatic environments, and is important to clarify the impact of nanosilver on aquatic organisms by systematically and comprehensively revealing the effect of nanosilver on fish gills.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!