Grain protein content (GPC) is an important quality trait that effectively modulates end-use quality and nutritional characteristics of wheat flour-based food products. The gene is responsible for the higher protein content in wheat grain. In addition to higher GPC, the is also generally associated with reduced grain filling period which eventually causes the yield penalty in wheat. The main aim of the present study was to evaluate the effect of foliar application of potassium nitrate (PN) and salicylic acid (SA) on the physiological characteristics of a set of twelve genotypes, including nine isogenic wheat lines carrying the gene and three elite wheat varieties with no gene, grown at wheat experimental area of the Department of Plant Breeding and Genetics, PAU, Punjab, India. The PN application significantly increased the number of grains per spike (GPS) by 6.42 grains, number of days to maturity (DTM) by 1.03 days, 1000-grain weight (TGW) by 1.97 g and yield per plot (YPP) by 0.2 kg/plot. As a result of PN spray, the flag leaf chlorophyll content was significantly enhanced by 2.35 CCI at anthesis stage and by 1.96 CCI at 10 days after anthesis in all the tested genotypes. Furthermore, the PN application also significantly increased the flag leaf nitrogen content by an average of 0.52% at booting stage and by 0.35% at both anthesis and 10 days after anthesis in all the evaluated genotypes. In addition, the yellow peduncle colour at 30 days after anthesis was also increased by 19.08% while the straw nitrogen content was improved by 0.17% in all the genotypes. The preliminary experiment conducted using SA demonstrated a significant increase in DTM and other yield component traits. The DTM increased by an average of 2.31 days, GPS enhanced by approximately 3.17 grains, TGW improved by 1.13g, and YPP increased by 0.21 kg/plot. The foliar application of PN and SA had no significant effect on GPC itself. The findings of the present study suggests that applications of PN and SA can effectively mitigate the yield penalty associated with gene by extending grain filling period in the wheat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389087 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1107705 | DOI Listing |
Front Plant Sci
December 2024
Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Hyderabad, Telangana, India.
Maize ( L.) is a globally important crop, thriving across diverse environments. Breeding maize inbreds with good combining ability for stable yields under both optimal and stress-prone conditions has been successful.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico.
Ying Yong Sheng Tai Xue Bao
October 2024
College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, China.
We investigated the effects of exogenous abscisic acid (ABA) on grain filling, starch accumulation, and endogenous hormones in maize (both the heat-tolerant maize variety Zhengdan 958 (ZD958) and the heat-sensitive variety Xianyu 335 (XY335)) under early post-anthesis high temperature stress by simulating high temperature stress for a period of 6 to 12 days post-anthesis in 2022 and 2023. There were three treatments: spraying water at ambient temperature as the control, spraying water at high temperature, and spraying ABA at high temperature. The results showed that early post-anthesis high temperature stress resulted in a significant reduction in grain weight and yield in maize, with XY335 showing a greater reduction than ZD958.
View Article and Find Full Text PDFPeerJ
December 2024
Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, XinJiang, China.
Genes (Basel)
October 2024
Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!