SNHG15 aids SARS-CoV-2 entry via RABL2A.

RNA Biol

Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK USA.

Published: January 2023

Angiotensin-converting enzyme 2 (ACE2) and several proteins have been identified as entry factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, whether long noncoding RNAs are involved in SARS-CoV-2 entry remains unknown. In this study, we investigated the role of small nucleolar RNA host gene 15 (SNHG15) in SARS-CoV-2 entry using a SARS-CoV-2 spike pseudotyped lentivirus with a luciferase reporter. Overexpression of SNHG15 promoted but SNHG15 knockdown limited SARS-CoV-2 entry in a dose- and time-dependent manner. SNHG15 interacted with Rab-like protein 2A (RABL2A). Overexpression and knockdown of RABL2A produced similar effects on SARS-CoV-2 entry as those of SNHG15. Furthermore, RABL2A knockdown abolished the SNHG15-mediated increase in SARS-CoV-2 entry. In conclusion, SNHG15 is a critical regulatory factor that aids SARS-CoV-2 entry through RABL2A.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399485PMC
http://dx.doi.org/10.1080/15476286.2023.2241755DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 entry
28
sars-cov-2
9
aids sars-cov-2
8
entry
8
entry rabl2a
8
snhg15
7
rabl2a
5
snhg15 aids
4
rabl2a angiotensin-converting
4
angiotensin-converting enzyme
4

Similar Publications

Objective: The aim of this study was to investigate the effect of SARS-CoV-2 Omicron BA. 5.2 (hereafter referred to as Omicron BA.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed substantial challenges on our society due to the COVID-19 pandemic. This virus relies heavily on its surface glycoprotein (S-glycoprotein) to facilitate attachment, fusion, and entry into host cells. While the nucleoprotein (N) in the ribonucleoprotein core binds to the viral RNA genome.

View Article and Find Full Text PDF

A class of tetrahydropyrazino[2,1-a:5,4-a']diisoquinoline derivatives were synthesized under environmentally friendly conditions using water as the solvent. The 3-D structures of some synthesized compounds were determined by X-ray diffraction. Since naturally occurring isoquinoline alkaloids have significant antiviral activities against a wide range of viruses, including coronaviruses, the synthesized compounds were assayed for their inhibitory activities against SARS-CoV-2.

View Article and Find Full Text PDF

Developing a broad-spectrum antiviral is imperative in light of the recent emergence of recurring viral infections. The critical role of host-virus attachment and membrane fusion during enveloped virus entry is a suitable target for developing broad-spectrum antivirals. A new class of flavonoid-based fusion inhibitors are designed to alter the membrane's physical properties.

View Article and Find Full Text PDF

Green seaweeds, which make up a major population of total seaweed worldwide, possess various therapeutic properties. The aim of the study directed at isolating a (1 → 4) linked sulfated rhamno xyloglucuronan, designated as UFP-2, from the edible green seaweed Ulva fasciata Delile, and to evaluate its efficacy in modulating immune responses and inhibiting SARS-CoV-2 (Delta variant) infection. Anti-inflammatory potential of UFP-2 was demonstrated through the regulation of key cytokines involved in inflammatory responses triggered by viral infections, including interferons (IFN-α/γ), interleukin (IL-1β/12/33), and tumor necrosis factor (TNF-α).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!