A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stability, electronic and catalytic properties of CoMoP(n = 1 ~ 5) clusters: A DFT study. | LitMetric

Context: The investigation of the stability, electronic properties, and catalytic activity of clusters CoMoP holds significant applications and implications in catalyst design, materials science, energy conversion and storage, and environmental protection. The study aims to delve into the unique features of the clusters CoMoP(n = 1 ~ 5), aiming to drive advancements in these related fields. The results obtained from the analysis revealed the stable configurations of the ten clusters, primarily characterized by steric structures. Furthermore, the energy of the clusters was found to increase continuously during growth, as indicated by calculations of atomic fragmentation energy and atomic binding energy. The researchers conducted an analysis of the Natural Population Analysis(NPA) charge, which revealed that Co atoms acted as electron donors, while P and Mo atoms acted as electron acceptors within the clusters. Additionally, an examination of the electrostatic potential indicated that Co and Mo atoms displayed nucleophilic tendencies, while P atoms exhibited electrophilic characteristics. Moreover, the density of states curves, HOMO and LUMO orbitals, and Kooperman's theorem were applied to the clusters CoMoP(n = 1 ~ 5).Through this study, a deeper understanding of the properties and behavior of clusters CoMoP has been achieved, shedding light on their potential as catalysts. The findings contribute to the existing knowledge of these clusters and provide a basis for further research and exploration in this field.

Methods: In this study, we employed the clusters CoMoP(n = 1 ~ 5) to simulate the local structure of the material, enabling us to investigate the stability, electronic properties, and catalytic properties influenced by the metal atoms. By systematically increasing the number of metal atoms and expanding the cluster size, we explored the variations in these properties. Density functional theory (DFT) calculations were performed using the B3LYP hybrid functional implemented in the Gaussian09 software package. The clusters CoMoP(n = 1 ~ 5) underwent optimization calculations and vibrational analysis at the def2-tzvp quantization level, resulting in optimized configurations with different spin multiplet degrees. For data characterization and graphical representation of the stability, electronic properties, and catalytic properties of the optimized configurations, we utilized a range of computational tools. Specifically, the quantum chemistry software GaussView, wave function analysis software Multiwfn were employed. Through the comprehensive utilization of these computational tools, we gained valuable insights into the stability, electronic properties, and catalytic properties of the clusters CoMoP(n = 1 ~ 5) and their dependence on different metal atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-023-05675-5DOI Listing

Publication Analysis

Top Keywords

stability electronic
20
catalytic properties
16
electronic properties
16
properties catalytic
16
clusters comopn = 1 ~ 5
16
clusters
12
metal atoms
12
properties
10
clusters comop
8
atoms acted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!