It is known that two-dimensional superconducting materials undergo a quantum phase transition from a localized state to superconductivity. When the disordered samples are cooled, bosons (Cooper pairs) are generated from Fermi glass and reach superconductivity through Bose glass. However, there has been no universal expression representing the transition from Fermi glass to Bose glass. Here, we discovered an experimental renormalization group flow from Fermi glass to Bose glass in terms of simple [Formula: see text]-function analysis. To discuss the universality of this flow, we analyzed manifestly different systems, namely a Nd-based two-dimensional layered perovskite and an ultrathin Pb film. We find that all our experimental data for Fermi glass fall beautifully into the conventional self-consistent [Formula: see text]-function. Surprisingly, however, flows perpendicular to the conventional [Formula: see text]-function are observed in the weakly localized regime of both systems, where localization becomes even weaker. Consequently, we propose a universal transition from Bose glass to Fermi glass with the new two-dimensional critical sheet resistance close to [Formula: see text].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394042PMC
http://dx.doi.org/10.1038/s41598-023-39285-1DOI Listing

Publication Analysis

Top Keywords

fermi glass
24
bose glass
20
[formula text]-function
12
glass
10
glass fermi
8
glass two-dimensional
8
glass bose
8
fermi
6
bose
5
two-dimensional superconducting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!