Enveloped RNA viruses are a group of viruses with an outer membrane derived from a host cell and a genome consisting of ribonucleic acid (RNA). These viruses rely on host cell machinery and organelles to replicate and assemble new virus particles. However, the interaction between viruses and host organelles may be disrupted by nanomaterials, such as gold nanoparticles (AuNPs) with unique physical and chemical properties. In this study, we investigated the effects of AuNPs with different surface charge properties on the subcellular structure and function of mammalian cells, and their effects on two representative enveloped RNA viruses: lentivirus and human coronavirus OC43 (HCoV- OC43) antiviral potential. By comparing the subcellular effects of AuNPs with different surface charge properties, we found that treatment with AuNPs with positive surface charges induced more significant disruption of subcellular structures than neutrally charged AuNPs and negatively charged AuNPs, mainly manifested in lysosomes and Cytoskeletal disorders. The antiviral effect of the surface positively charged AuNPs was further evaluated using lentivirus and HCoV-OC43. The results showed that AuNPs had a significant inhibitory effect on both lentivirus and HCoV-OC43 without obvious side effects. In conclusion, our study provides insights into the mechanism of action and biocompatibility of AuNP in biological systems, while supporting the potential of targeting organelle dynamics against enveloped RNA viruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393956 | PMC |
http://dx.doi.org/10.1038/s41392-023-01562-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!