Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Squalene is a triterpenoid compound and widely used in various industries such as medicine and cosmetics due to its strong antioxidant and anticancer properties. The purpose of this study is to increase the accumulation of squalene in filamentous fungi using exogeneous butenafine hydrochloride, which is an inhibitor for squalene epoxidase. The detailed settings achieved that the filamentous fungi, Trichoderma virens PS1-7, produced squalene up to 429.93 ± 51.60 mg/L after culturing for 7 days in the medium consisting of potato infusion with glucose at pH 4.0, in the presence of 200 µm butenafine. On the other hand, no squalene accumulation was observed without butenafine. This result indicated that squalene was biosynthesized in the filamentous fungi PS1-7, which can be used as a novel source of squalene. In addition, we successfully obtained highly 13C-enriched squalene by using [U-13C6]-glucose as a carbon source replacing normal glucose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bbb/zbad102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!