AI Article Synopsis

  • Chiral metal-halide semiconductors are being explored for their unique spintronic properties and potential to enhance the understanding of chirality-induced spin selectivity (CISS) in various materials.
  • The study focuses on synthesizing two-dimensional chiral halide perovskites using new organic cations, leading to antiferroelectricity and unique spin textures in their band structure.
  • Experimental results indicate the presence of a CISS effect with significant spin polarization, allowing for the creation of efficient chiro-spintronic devices with impressive magnetoresistance performance.

Article Abstract

In the last decade, chirality-induced spin selectivity (CISS), the spin-selective electron transport through chiral molecules, has been described in a large range of materials, from insulators to superconductors. Because more experimental studies are desired for the theoretical understanding of the CISS effect, chiral metal-halide semiconductors may contribute to the field thanks to their chiroptical and spintronic properties. In this regard, this work uses new chiral organic cations S-HP1A and R-HP1A (HP1A = 2-hydroxy-propyl-1-ammonium) to prepare 2D chiral halide perovskites (HPs) which crystallize in the enantiomorphic space groups P4 2 2 and P4 2 2, respectively. The fourfold symmetry induces antiferroelectricity along the stacking axis which, combined to incomplete Rashba-like splitting in each individual 2D polar layer, results in rare spin textures in the band structure. As revealed by magnetic conductive-probe atomic force microscopy (AFM) measurements, these materials show CISS effect with partial spin polarization (SP; ±40-45%). This incomplete effect is efficient enough to drive a chiro-spintronic device as demonstrated by the fabrication of spin valve devices with magnetoresistance (MR) responses up to 250 K. Therefore, these stable lead-bromide HP materials not only represent interesting candidates for spintronic applications but also reveal the importance of polar symmetry-breaking topology for spin selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202305784DOI Listing

Publication Analysis

Top Keywords

spin selectivity
12
spin
6
chiral
5
chirality versus
4
versus symmetry
4
symmetry electron's
4
electron's spin
4
selectivity nonpolar
4
nonpolar chiral
4
chiral lead-bromide
4

Similar Publications

Spin State Modulation with Oxygen Vacancy Orientates C/N Intermediates for Urea Electrosynthesis of Ultrahigh Efficiency.

Adv Mater

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.

The co-electrolysis of CO and NO to synthesize urea has become an effective pathway to alternate the conventional Bosch-Meiser process, while the complexity of C-/N-containing intermediates for C-N coupling results in the urea electrosynthesis of unsatisfactory efficiency. In this work, an electronic spin state modulation maneuver with oxygen vacancies (Ov) is unveiled to effectively meliorate the oriented generation of key intermediates NH and CO for C-N coupling, furnishing urea in ultrahigh yield of 2175.47 µg mg h and Faraday efficiency of 70.

View Article and Find Full Text PDF

Densely populated macrocyclic dicobalt sites in ladder polymers for low-overpotential oxygen reduction catalysis.

Nat Commun

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China.

Dual-atom catalysts featuring synergetic dinuclear active sites, have the potential of breaking the linear scaling relationship of the well-established single-atom catalysts for oxygen reduction reaction; however, the design of dual-atom catalysts with rationalized local microenvironment for high activity and selectivity remains a great challenge. Here we design a bisalphen ladder polymer with well-defined densely populated binuclear cobalt sites on Ketjenblack substrates. The strong electron coupling effect between the fully-conjugated ladder structure and carbon substrates enhances the electron transfer between the cobalt center and oxygen intermediates, inducing the low-to-high spin transition for the 3d electron of Co(II).

View Article and Find Full Text PDF

Using NMR Spectroscopy to Evaluate Metal-Ligand Bond Covalency for the f Elements.

Acc Chem Res

January 2025

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.

ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.

View Article and Find Full Text PDF

Optimizing photocatalysis electron spin control.

Chem Soc Rev

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.

Solar-driven photocatalytic technology holds significant potential for addressing energy crisis and mitigating global warming, yet is limited by light absorption, charge separation, and surface reaction kinetics. The past several years has witnessed remarkable progress in optimizing photocatalysis electron spin control. This approach enhances light absorption through energy band tuning, promotes charge separation by spin polarization, and improves surface reaction kinetics strengthening surface interaction and increasing product selectivity.

View Article and Find Full Text PDF

The development of acid-stable water oxidation electrocatalysts is crucial for high-performance energy conversion devices. Different from traditional nanostructuring, here we employ an innovative microwave-mediated electron-phonon coupling technique to assemble specific Ru atomic patterns (instead of random Ru-particle depositions) on MnCrO surfaces (Ru-MnCrO) in RuCl solution because hydrated Ru-ion complexes can be uniformly activated to replace some Mn sites at nearby Cr-dopants through microwave-triggered energy coherent superposition with molecular rotations and collisions. This selective rearrangement in Ru-MnCrO with particular spin-differentiated polarizations can induce localized spin domain inversion from reversed to parallel direction, which makes Ru-MnCrO demonstrate a high current density of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!