Agriculture accounts for 61 % of fresh water consumption in China. Although population and diet have a significant impact on water consumption, little is known about the reasons for and extent of their influence. Changes in the blue and green water footprint of 20 agricultural sectors in 31 Chinese provinces were estimated in 5 scenarios by applying the environmentally expanded multi-regional input-output model. The water footprint network is strongly interconnected, with over 50 % of the provinces characterized as net importers of the blue water footprint, 70 % of the total blue and green water footprint imports in developed provinces, and 65 % of the total blue and green water footprint exports in developing provinces, with the flow distribution driven and dominated by economically developed provinces. The findings also highlighted that the impact of population change on the water footprint is insignificant, contributing 0.51 % and 5.78 % to the reduction of the water footprint in 2030 and 2050, respectively. The impact of simultaneous changes in the population and dietary structure on the water footprint was higher than population changes and lower than dietary structure changes. The main force driving changes in the water footprint was changes in the dietary structure, which resulted in a two-fold effect on the water footprint. First, it has increased the blue and green water footprint by 33 % and 12 %, respectively, thus aggravating the coercive impact on water resources on the production side. Second, it has led to a change in the main contributing sectors for the blue and green water footprint from cereals to fruits, vegetables, and potatoes. Therefore, when the population is changing and optimizing its dietary structures, a greater focus must be placed on threats and pressures to water resources. This will result in better scientific management and more efficient use of water resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.165763 | DOI Listing |
Sci Rep
January 2025
School of Civil Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, 600127, India.
The carbon footprint associated with cement production, coupled with depletion of natural resources and climate change, underscores the need for sustainable alternatives. This study explores the effect of metakaolin (MK) and nano-silica (NS) on concrete's engineering performance and environmental impact. Initially, compressive, tensile, and flexural strength tests, along with durability assessments like water absorption, sorptivity, rapid chloride permeability, and resistance to acid and sulphate attacks, were conducted.
View Article and Find Full Text PDFSci Total Environ
January 2025
CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba 30501, Costa Rica.
Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.
View Article and Find Full Text PDFGigascience
January 2025
Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
The Asian icefish, Protosalanx chinensis, has undergone extensive colonization in various waters across China for decades due to its ecological and physiological significance as well as its economic importance in the fishery resource. Here, we decoded a telomere-to-telomere (T2T) genome for P. chinensis combining PacBio HiFi long reads and ultra-long ONT (nanopore) reads and Hi-C data.
View Article and Find Full Text PDFJAMA Dermatol
January 2025
Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.
Importance: There is growing awareness of the US health sector's substantial contribution to the country's greenhouse gas (GHG) emissions, exacerbating the health threats from climate change. Reducing health care's environmental impact requires understanding its carbon emissions, but there are few published audits of health systems and fewer comprehensive emissions analyses at the clinic or department level.
Objective: To quantify the annual GHG emissions from a large outpatient dermatology practice, compare relative sources of emissions, and identify actionable targets.
Materials (Basel)
December 2024
Department of Building Materials Engineering, Faculty of Civil Engineering, Warsaw University of Technology, Armii Ludowej 16, 00-637 Warsaw, Poland.
The aim of the presented research was to evaluate the impacts of modifications to the technical properties of fly ash-based geopolymer composites, particularly focusing on enhancing the thermal insulation. Through the utilization of a generalized utility function, optimal dosages of additives such as perlite sand, waste perlite powder, and cenospheres were determined. The study aimed to increase the thermal insulation of the composites while maintaining satisfactory compressive and flexural strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!