High-affinity potassium (K+) transporter (HAK)/K+ uptake permease (KUP)/K+ transporter (KT) have been identified in all genome-sequenced terrestrial plants. They play an important role in K+ acquisition and translocation and in enhancing salt tolerance. Here, we report that plasma membrane-located OsHAK18 functions in K+ and sodium (Na+) circulation and sugar translocation in rice (Oryza sativa). OsHAK18 was expressed mainly, though not exclusively, in vascular tissues and particularly in the phloem. Knockout (KO) of OsHAK18 reduced K+ concentration in phloem sap and roots but increased K+ accumulation in the shoot of both 'Nipponbare' and 'Zhonghua11' cultivars, while overexpression (OX) of OsHAK18 driven by its endogenous promoter increased K+ concentration in phloem sap and roots and promoted Na+ retrieval from the shoot to the root under salt stress. Split-root experimental analysis of rubidium (Rb+) uptake and circulation indicated that OsHAK18-OX promoted Rb+ translocation from the shoot to the root. In addition, OsHAK18-KO increased while OsHAK18-OX reduced soluble sugar content in the shoot and oppositely affected the sugar concentration in the phloem and its content in the root. Moreover, OsHAK18-OX dramatically increased grain yield and physiological K+ utilization efficiency. Our results suggest that-unlike other OsHAKs analyzed heretofore-OsHAK18 is critical for K+ and Na+ recirculation from the shoot to the root and enhances the source-to-sink translocation of photo-assimilates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/plphys/kiad435 | DOI Listing |
J Econ Entomol
January 2025
Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
Industrial hemp, Cannabis sativa L., is an herbaceous annual plant that has recently re-entered crop production both in the field and in greenhouses within the United States. Like many agronomic crops, hemp production faces several insect pest challenges.
View Article and Find Full Text PDFPlants (Basel)
December 2024
National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
The 'Cuimi' kumquat is a unique citrus cultivar known for its thin, crisp pulp and sweet, aromatic flavor. In addition to its use in fresh consumption and processing, this variety exhibits certain medicinal properties. This study aims to investigate the genetic diversity of the Huanglongbing (HLB) bacterium across different tissues of the 'Cuimi' kumquat, offering a theoretical basis for understanding the HLB epidemic in Dechang County, Sichuan.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:
Numerous studies in various species have demonstrated that the application of an electric field can improve plant growth. However, plants showed inconsistent responses and the background mechanism for responses to electric fields remain unclear. Here, to deepen our understanding of the mechanisms involved in electric field-induced changes in physiology, we investigated the effects of electric fields on the growth and development of Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFPestic Biochem Physiol
January 2025
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China. Electronic address:
Ecotoxicol Environ Saf
January 2025
College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China. Electronic address:
Celosia argentea Linn. is a hyperaccumulator for the remediation of manganese (Mn)-contaminated soil owing to its rapid growth, high decontamination capacity, and strong stress resistance. However, little is known about the processes involved in long-distance transport of Mn in hyperaccumulators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!